
Krill User Manual

NLnet Labs

Sep 20, 2022

GETTING STARTED

1 Before You Start 3
1.1 The Moving Parts . 3
1.2 Publishing With Your Parent . 4
1.3 Publishing Yourself . 4
1.4 System Requirements . 5

2 Architecture 7
2.1 Used Disk Space . 7
2.2 Saving State Changes . 8
2.3 Loading State at Startup . 9
2.4 Recover State at Startup . 9
2.5 Backup / Restore . 10
2.6 Krill Upgrades . 10
2.7 Krill Downgrades . 10
2.8 Proxy and HTTPS . 10

3 Install and Run 13
3.1 Quick Start . 13
3.2 Updating . 16
3.3 Installing Specific Versions . 17
3.4 Installing with Cargo . 18
3.5 Generate Configuration File . 20
3.6 Start and Stop the Daemon . 20

4 Get Started with Krill 23
4.1 Login . 23
4.2 Create your Certification Authority . 25
4.3 Repository Setup . 25
4.4 Parent Setup . 28

5 RIR and NIR Interactions 31
5.1 Hosted Publication Server . 31
5.2 Member Portals . 31

6 Manage ROAs 35
6.1 Show BGP Info . 35
6.2 ROA Suggestions . 37
6.3 Add a ROA . 39
6.4 Disable BGP Info . 39

7 Monitoring 41

i

7.1 Prometheus . 41
7.2 Stats Endpoints . 46

8 Using the CLI or API 47
8.1 Introduction . 47
8.2 Setting Defaults . 48
8.3 Explore the API . 48
8.4 krillc config . 49
8.5 krillc health . 49
8.6 krillc info . 50
8.7 krillc add . 50
8.8 krillc delete . 51
8.9 krillc list . 52
8.10 krillc parents . 52
8.11 krillc parents request . 53
8.12 krillc parents add . 53
8.13 krillc parents statuses . 55
8.14 krillc parents contact . 57
8.15 krillc parents remove . 57
8.16 krillc repo . 58
8.17 krillc repo request . 58
8.18 krillc repo configure . 59
8.19 krillc repo status . 60
8.20 krillc repo show . 61
8.21 krillc show . 62
8.22 krillc issues . 64
8.23 krillc history . 65
8.24 krillc history commands . 66
8.25 krillc history details . 68
8.26 krillc roas . 70
8.27 krillc roas list . 71
8.28 krillc roas update . 71
8.29 krillc roas bgp . 77
8.30 krillc bgpsec . 78
8.31 krillc bgpsec list . 79
8.32 krillc bgpsec add . 79
8.33 krillc bgpsec remove . 80
8.34 krillc bulk . 80
8.35 krillc bulk publish . 81
8.36 krillc bulk refresh . 81
8.37 krillc bulk sync . 81
8.38 krillc children . 82
8.39 krillc children add . 82
8.40 krillc children info . 84
8.41 krillc children update . 85
8.42 krillc children response . 86
8.43 krillc children connections . 87
8.44 krillc children suspend . 88
8.45 krillc children unsuspend . 89
8.46 krillc children remove . 89
8.47 krillc keyroll . 89
8.48 krillc keyroll init . 90

9 Login with Named Users 91

ii

9.1 Permissions, Roles & Attributes . 91
9.2 Config File Users . 92
9.3 OpenID Connect Users . 96
9.4 Custom Authorization Policies . 111

10 Running a Publication Server 115
10.1 Why run your own? . 115
10.2 Install . 115
10.3 Configure . 115
10.4 Proxy for Remote Publishers . 117
10.5 Proxy for CLI and API . 118
10.6 Configure the Repository . 118
10.7 Manage Publishers . 121
10.8 Migrate existing Krill CAs . 125

11 Delegate to Child CAs 127

12 Key Rollover 129
12.1 Quick Guide to Key Rollovers . 129
12.2 Key Life Cycle Background . 130

13 Migrate to a new Repository 133

14 Hardware Security Modules 135
14.1 Overview . 135
14.2 Integrating with an HSM . 135
14.3 Compatible HSMs . 136
14.4 Scenarios . 137
14.5 Configuration . 137
14.6 Signer Lifecycle . 139
14.7 SoftHSMv2 Example . 140
14.8 Configuration Reference . 141

15 Manage BGPSec Router Certificates 147

16 Manage ASPA Objects 149
16.1 Install CLI . 149
16.2 ASPA Configurations . 149
16.3 ASPA Configuration Notation . 150
16.4 Add an ASPA . 150
16.5 List ASPAs . 150
16.6 Update an ASPA . 151
16.7 Remove an ASPA . 151

17 Running a Krill Test Environment 153
17.1 Install a Proxy Server . 153
17.2 Set up Letsencrypt . 154
17.3 Install Krill . 154
17.4 Configure Testbed . 154
17.5 Start / Enable krill . 155

18 Running with Docker 157
18.1 Get Docker . 157
18.2 Fetching and Running Krill . 157
18.3 Admin Token . 158

iii

18.4 Running the Krill CLI . 158
18.5 Service and Certificate URIs . 159
18.6 Data . 159
18.7 Logging . 159
18.8 Environment Variables . 160
18.9 Using a Config File . 160
18.10 Running as a non-root user . 160

19 Upgrading Krill 161
19.1 Upgrade . 161
19.2 Prepare Upgrade with krillup . 161
19.3 Important Changes . 162

20 Failure and Recovery Scenarios 171
20.1 CA Temporarily Unavailable . 171
20.2 Parent Temporarily Unavailable . 171
20.3 Publication Point Expired . 172
20.4 Parent Publication Point Expired . 173

Index 175

iv

Krill User Manual

Krill is a free, open source Resource Public Key Infrastructure (RPKI) daemon, featuring a Certificate Authority (CA)
and publication server, written by NLnet Labs.

You are welcome to ask questions or post comments and ideas on our RPKI mailing list. If you find a bug in Krill, feel
free to create an issue on GitHub. Krill is distributed under the Mozilla Public License 2.0.

Note: For a quick summary of what’s new and changed in the latest version see the release notes. If upgrading consult
the upgrade guide.

Krill is intended for:

• Organisations who hold address space from multiple Regional Internet Registries (RIRs). Using Krill,
ROAs can be managed seamlessly for all resources within one system.

• Organisations that need to be able to delegate RPKI to their customers or different business units, so that
that they can run their own CA and manage ROAs themselves.

• Organisations who do not wish to rely on the web interface of the hosted systems that the RIRs offer, but
require RPKI management that is integrated with their own systems using a common UI or API.

Using Krill, you can run your own RPKI Certificate Authority as a child of one or more parent CAs, usually a Regional
Internet Registry (RIR) or National Internet Registry (NIR). With Krill you can run under multiple parent CAs seam-

GETTING STARTED 1

https://github.com/NLnetLabs/krill-manual/commits/main
https://discord.gg/8dvKB5Ykhy
https://twitter.com/krillrpki/
https://nlnetlabs.nl
https://nlnetlabs.nl/mailman/listinfo/rpki
https://github.com/NLnetLabs/krill/releases/latest

Krill User Manual

lessly and transparently. This is especially convenient if your organisation holds address space in several RIR regions,
as it can all be managed as a single pool.

Krill can also act as a parent for child CAs. This means you can delegate resources down to children of your own, such
as business units, departments, members or customers, who, in turn, manage ROAs themselves.

Lastly, Krill features a publication server so you can either publish your certificate and ROAs with a third party, such
as your NIR or RIR, or you publish them yourself. Krill can be managed with a web user interface, from the command
line and through an API.

2 GETTING STARTED

CHAPTER

ONE

BEFORE YOU START

RPKI is a very modular system and so is Krill. Which parts you need and how you fit them together depends on
your situation. Before you begin with installing Krill, there are some basic concepts you should understand and some
decisions you need to make.

1.1 The Moving Parts

With Krill there are two fundamental pieces at play. The first part is the Certificate Authority (CA), which takes care of
all the cryptographic operations involved in RPKI. Secondly, there is the publication server which makes your certificate
and ROAs available to the world.

In almost all cases you will need to run the CA that Krill provides under a parent CA, usually your Regional Internet
Registry (RIR) or National Internet Registry (NIR). The communication between the parent and the child CA is initiated
through the exchange of two XML files, which you need to handle manually: a child request XML and a parent response
XML. This involves generating the request file, providing it to your parent, and giving the response file back to your
CA.

After this initial exchange has been completed, all subsequent requests and responses are handled by the parent and
child CA themselves. This includes the entitlement request and response that determines which resources you receive
on your certificate, the certificate request and response, as well as the revoke request and response.

Important: The initial XML file exchange is the only manual step required to get started with Delegated RPKI. All
other requests and responses, as well as re-signing and renewing certificates and ROAs are automated. As long as Krill
is running, it will automatically update the entitled resources on your certificate, as well as reissue certificates,
ROAs and all other objects before they expire or become stale. Note that even if Krill does go down, you have 8
hours to bring it back up before data starts going stale.

Whether you also run the Krill publication server depends on if you can, or want to use one offered by a third party.
For the general wellbeing of the RPKI ecosystem, we would generally recommend to publish with your parent CA, if
available. Setting this up is done in the same way as with the CA: exchanging a publisher request XML and a repository
response XML.

3

Krill User Manual

1.2 Publishing With Your Parent

If you can use a publication server provided by your parent, the installation and configuration of Krill becomes extremely
easy. After the installation has completed, you perform the XML exchange twice and you are done.

Fig. 1: A repository hosted by the parent CA, in this case the RIR or NIR.

Krill is designed to run continuously, but there is no strict uptime requirement for the CA. If the CA is not available
you just cannot create or update ROAs. This means you can bring Krill down to perform maintenance or migration, as
long as you bring it back up within 8 hours to ensure your cryptographic objects are re-signed before they go stale.

Note: This scenario illustrated here also applies if you use an RPKI publication server offered by a third party.

At this time, APNIC, ARIN and Brazilian NIR NIC.br offer a publication server for their members. Several other RIRs
have this functionality on their roadmap. This means that in some cases, you will have to publish yourself.

1.3 Publishing Yourself

Krill features a publication server, disabled by default, but which can be used to host a server for yourself, and others,
such as customers or business units who run their own Krill CAs as children under your CA, and to whom you have
delegated resource certificates.

If you run Krill as a publication server, you will be faced with running a public service with all related responsibilities,
such as uptime and DDoS protection. This option is not recommended if you don’t have a clear need to run your own
server.

Read more about this option in Running a Publication Server

4 Chapter 1. Before You Start

Krill User Manual

1.4 System Requirements

The system requirements for Krill are quite minimal. The cryptographic operations that need to be performed by the
Certificate Authority have a negligible performance and memory impact on any modern day machine.

When you publish ROAs yourself using the Krill publication server in combination with Rsyncd and a web server of
your choice, you will see traffic from several hundred relying party software tools querying every few minutes. The
total amount of traffic is also negligible for any modern day situation.

Tip: For reference, NLnet Labs runs Krill in production and serves ROAs to the world using a 2 CPU / 2GB RAM /
60GB disk virtual machine. Although we only serve four ROAs and our repository size is 16KB, the situation would
not be different if serving 100 ROAs.

1.4. System Requirements 5

Krill User Manual

6 Chapter 1. Before You Start

CHAPTER

TWO

ARCHITECTURE

This section is intended to give you an overview of the architecture of Krill, which is important to keep in mind when
deploying the application in your infrastructure. It will give you an understanding how and where data is stored, how
to make your setup redundant and how to save and restore backups.

Warning: Krill does NOT support clustering at this time. You can achieve high availability by doing a fail-over
to a standby inactive installation using the same data and configuration. However, you cannot have multiple active
instances. This feature is on our long term roadmap.

2.1 Used Disk Space

Krill stores all of its data under the DATA_DIR. For users who will operate a CA under an RIR / NIR parent the following
sub-directories are relevant:

Directory Contents
data_dir/ssl The HTTPS key and certificate used by Krill
data_dir/cas The history of your CA(s) in raw JSON format
data_dir/pubd If used, the history of your Publication Server

Note: Note that old versions of Krill also used the directories data_dir/rfc8181 and data_dir/rfc6492 for
storing all protocol messages exchanged between your CAs and their parent and repository. If they are still present on
your system, you can safely remove them and save space - potentially quite a bit of space.

2.1.1 Archiving

Krill offers the option to archive old, less relevant, historical information related to publication. You can enable this
by setting the option archive_threshold_days in your configuration file. If set Krill will move all publication
events older than the specified number of days to a subdirectory called archived under the relevant data directory, i.e.
data_dir/pubd/0/archived if you are using the Krill Publication Server and data_dir/cas/<your-ca-name>/
archived for each of your CAs.

You can set up a cronjob to delete these events once and for all, but we recommend that you save them in long term
storage if you can. The reason is that if (and only if) you have this data, you will be able to rebuild the complete Krill
state based on its audit log of events, and irrevocably prove that no changes were made to Krill other than the changes
recorded in the audit trail. We have no tooling for this yet, but we have an issue on our backlog.

7

https://github.com/NLnetLabs/krill/issues/20
https://github.com/NLnetLabs/krill/issues/331

Krill User Manual

2.2 Saving State Changes

You can skip this section if you’re not interested in the gory details. However, understanding this section will help to
explain how backup and restore works in Krill, and why a standby fail-over node can be used, but Krill’s locking and
storage mechanism needs to be changed in order to make multiple active nodes work.

State changes in Krill are tracked using events. Krill CA(s) and Publication Servers are versioned. They can only be
changed by applying an event for a specific version. An event just contains the data that needs to be changed. Crucially,
they cannot cause any side effects. As such, the overall state can always be reconstituted by applying all past events.
This concept is called event-sourcing, and in this context the CAs and Publication Servers are so-called aggregates.

Events are not applied directly. Rather, users of Krill and background jobs will send their intent to make a change
through the API, which then translates this into a so-called command. Krill will then lock the target aggregate and send
the command to it. This locking mechanism is not aware of any clustering, and it’s a primary reason why Krill cannot
run as an active-active cluster yet.

Upon receiving a command the aggregate (your CA etc.) will do some work. In some cases a command can have a
side-effect. For example it may instruct your CA to create a new key pair, after receiving entitlements from its parent.
The key pair is random — applying a command again would result in a new random key pair. Remember that commands
are not re-applied to aggregates, only their resulting events are. Thus in this example there would be an event caused
that contains the resulting key pair.

After receiving the command, the aggregate will return one of the following:

1. An error Usually this means that the command is not applicable to the aggregate state. For example, you may
have tried to remove a ROA which does not exist.

When Krill encounters such an error, it will store the command with some meta-information like the time
the command was issued, and a summary of the error, so that it can be seen in the history. It will then
unlock the aggregate, so that the next command can be sent to it.

2. No error, zero events In this case the command turned out to be a no-op, and Krill just unlocks the aggregate.
The command sequence counter is not updated, and the command is not saved. This is used as a feature
whenever the ‘republish’ background job kicks in. A ‘republish’ command is sent, but it will only have an
actual effect if there was a need to republish — e.g. a manifest would need to be re-issued before it would
expire.

3. One or more events In this case there is a desired state change in a Krill aggregate. Krill will now apply and
persist the changes in the following order:

• Each event is stored. If an event already exists for a version, then then the update is aborted. Because
Krill cannot run as a cluster, and it uses locking to ensure that updates are done in sequence, this will
only fail on the first event if a user tried to issue concurrent updates to the same CA.

• On every fifth event a snapshot of the state is saved to a new file. If this is successful then the old
snapshot (if there is one) is renamed and kept as a backup snapshot. The new snapshot is then renamed
to the ‘current’ snapshot.

• When all events are saved, the command is saved enumerating all resulting events, and including meta-
information such as the time that the time that the command was executed. And when multiple users
will be supported, this will also include who made a change.

• Finally the version information file for the aggregate is updated to indicate its current version, and
command sequence counter.

Warning: Krill will crash, by design, if there is any failure in saving any of the above files to disk. If Krill cannot
persist its state it should not try to carry on. It could lead to disjoints between in-memory and on-disk state that are

8 Chapter 2. Architecture

https://github.com/NLnetLabs/krill/issues/20
https://github.com/NLnetLabs/krill/issues/294

Krill User Manual

impossible to fix. Therefore, crashing and forcing an operator to look at the system is the only sensible thing Krill
can now do. Fortunately, this should not happen unless there is a serious system failure.

2.3 Loading State at Startup

Krill will rebuild its internal state whenever it starts. If it finds that there are surplus events or commands compared
to the latest information state for any of the aggregates, then it will assume that they are present because, either Krill
stopped in the middle of writing a transaction of changes to disk, or your backup was taken in the middle of a transaction.
Such surplus files are backed up to a subdirectory called surplus under the relevant data directory, i.e. data_dir/
pubd/0/surplus if you are using the Krill Publication Server and data_dir/cas/<your-ca-name>/surplus for
each of your CAs.

2.4 Recover State at Startup

When Krill starts, it will try to go back to the last possible recoverable state if:

• it cannot rebuild its state at startup due to data corruption

• the environment variable: KRILL_FORCE_RECOVER is set

• the configuration file contains always_recover_data = true

Under normal circumstances, i.e. when there is no data corruption, performing this recovery will not be necessary. It
can also take significant time due to all the checks performed. So, we do not recommend forcing this.

Krill will try the following checks and recovery attempts:

• Verify each recorded command and its effects (events) in their historical order.

• If any command or event file is corrupt it will be moved to a subdirectory called corrupt under the relevant data
directory, and all subsequent commands and events will be moved to a subdirectory called surplus under the
relevant data directory.

• Verify that each snapshot file can be parsed. If it can’t then this file is moved to the relevant corrupt sub-
directory.

• If a snapshot file could not be parsed, try to parse the backup snapshot. If this file can’t be parsed, move it to the
relevant corrupt sub-directory.

• Try to rebuild the state to the last recoverable state, i.e. the last known good event. Note that if this pre-dates the
available snapshots, or, if no snapshots are available this means that Krill will try to rebuild state by replaying
all events. If you had enabled archiving of events, it will not be able rebuild state.

• If rebuilding state failed, Krill will now exit with an error.

Note that in case of data corruption Krill may be able to fall back to an earlier recoverable state, but this state may be
far in the past. You should always verify your ROAs and/or delegations to child CAs in such cases.

Of course, it’s best to avoid data corruption in the first place. Please monitor available disk space, and make regular
backups.

2.3. Loading State at Startup 9

Krill User Manual

2.5 Backup / Restore

Backing up Krill is as simple as backing up its data directory. There is no need to stop Krill during the backup. To
restore put back your data directory and make sure that you refer to it in the configuration file that you use for your Krill
instance. As described above, if Krill finds that the backup contain an incomplete transaction, it will just fall back to
the state prior to it.

Warning: You may want to encrypt your backup, because the data_dir/ssl directory contains your private
keys in clear text. Encrypting your backup will help protect these, but of course also implies that you can only
restore if you have the ability to decrypt.

2.6 Krill Upgrades

All Krill versions 0.4.1 and upwards can be automatically upgraded to the current version. Any required data migrations
will be performed automatically. To do so we recommend that you:

• backup your krill data directories

• install the new version of Krill

• stop the running Krill instance

• start Krill again, using the new binary, and the same configuration

If you want to test if data migrations will work correctly for your data, you can do the following:

• copy your data directory to another system

• set the env variable KRILL_UPGRADE_ONLY=1

• create a configuration file, and set data_dir=/path/to/your/copy

• start up Krill

Krill will then perform the data migrations, rebuild its state, and then exit before doing anything else.

2.7 Krill Downgrades

Downgrading Krill data is not supported. So, downgrading can only be achieved by installing a previous version of
Krill and restoring a backup from before your upgrade.

2.8 Proxy and HTTPS

2.8.1 HTTPS Mode

Krill uses HTTPS by default, and will generate a key pair and create a self-signed certificate if no previous key pair or
certificate is found. Files are stored under the data directory as ssl/key.pem and ssl/cert.pem respectively.

Alternatively you make Krill configure krill to not generate these files but use existing files at the same file locations.
This should work, but has not been tested extensively. To use this mode you can use `https_mode = "existing"`
in your krill configuration file.

10 Chapter 2. Architecture

Krill User Manual

It also possible to force Krill to disable HTTPS and use plain HTTP. We do not recommend this set up, but it may be
useful in certain setups. Arguably, as long as Krill listens on 127.0.0.1 only (as is the default), and an HTTPS enabled
proxy server is used for public access, then having plain HTTP traffic between the proxy and Krill over the loopback
interface is not necessarily problematic. To use this mode set `https_mode = "disable"` in your configuration
file.

If you need to access the Krill UI or API (also used by the CLI) from another machine, then we highly recommend that
you use a proxy server such as NGINX or Apache. This proxy can then also use a proper HTTPS certificate signed by
a web TA, and production grade TLS support.

2.8.2 Proxy Krill UI

The Krill UI and assets are hosted directly under the base path /. So, in order to proxy to the Krill UI you should proxy
ALL requests under / to the Krill back-end.

Note that although the UI and API are protected by a token, you should consider further restrictions in your proxy setup,
such as restrictions on source IP or adding your own authentication.

2.8.3 Proxy Krill as Parent

If you delegated resources to child CAs then you will need to ensure that these children can reach your Krill. Child
requests for resource certificates are directed to the /rfc6492 directory under the service_uri that you defined in
your configuration file.

Note that contrary to the UI you should not add any additional authentication mechanisms to this location. RFC
6492 uses cryptographically signed messages sent over HTTP and is secure. However, verifying messages and signing
responses can be computationally heavy, so if you know the source IP addresses of your child CAs, you may wish to
restrict access based on this.

2.8.4 Proxy Krill as Publication Server

If you are running Krill as a Publication Server, then you should read here how to do the Publication Server specific
set up.

Warning: We recommend that you do not make Krill available to the public internet unless you really need remote
access to the UI or API, or you are serving as parent CA or Publication Server for other CAs.

2.8. Proxy and HTTPS 11

https://tools.ietf.org/html/rfc6492.html
https://tools.ietf.org/html/rfc6492.html

Krill User Manual

12 Chapter 2. Architecture

CHAPTER

THREE

INSTALL AND RUN

Before you can start to use Krill you will need to install, configure and run the Krill application somewhere. Please
follow the steps below and you will be ready to get started.

3.1 Quick Start

Getting started with Krill is really easy by either installing a binary package for Debian and Ubuntu or for Red Hat
Enterprise Linux and CentOS. You can also run with Docker or build from Cargo, Rust’s build system and package
manager.

In case you intend to serve your RPKI certificate and ROAs to the world yourself or you want to offer this as a service
to others, you will also need to have a public rsyncd and HTTPS web server available.

Note: For the oldest platforms, Ubuntu 16.04 LTS and Debian 9, the packaged Krill binary is statically linked with
OpenSSL 1.1.0 as this is the minimum version required by Krill and is higher than available in the official package
repositories for those platforms.

Debian

Ubuntu

RHEL/CentOS

Cargo

If you have a machine with an amd64/x86_64 architecture running Debian 9, 10 or 11, you can install Krill from our
software package repository.

If your machine uses an ARM architecture we also provide (via the same repository) ARMv6 & ARM64 packages for
Debian 10 and an ARMv7 package for Debian 11, intended to support Raspberry Pi 1b, Rock64 and Raspberry Pi 4b
respectively.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
ca-certificates \
curl \
gnupg \
lsb-release

13

https://packages.nlnetlabs.nl

Krill User Manual

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/
→˓keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

After updating the apt package index you can install Krill:

sudo apt update
sudo apt install krill

Review the generated configuration file at /etc/krill.conf. Pay particular attention to the service_uri and
admin_token settings. Tip: The configuration file was generated for you using the krillc config simple com-
mand.

Once happy with the settings use sudo systemctl enable --now krill to instruct systemd to enable the Krill
service at boot and to start it immediately. The krill daemon runs as user krill and stores its data in /var/lib/
krill.

You can check the status of Krill with:

sudo systemctl status krill

You can view the logs with:

sudo journalctl --unit=krill

If you have a machine with an amd64/x86_64 architecture running Ubuntu 16.x, 18.x, 20.x or 22.x, you can install
Krill from our software package repository.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
ca-certificates \
curl \
gnupg \
lsb-release

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/
→˓keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

14 Chapter 3. Install and Run

https://packages.nlnetlabs.nl

Krill User Manual

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

After updating the apt package index you can install Krill:

sudo apt update
sudo apt install krill

Review the generated configuration file at /etc/krill.conf. Pay particular attention to the service_uri and
admin_token settings. Tip: The configuration file was generated for you using the krillc config simple com-
mand.

Once happy with the settings use sudo systemctl enable --now krill to instruct systemd to enable the Krill
service at boot and to start it immediately. The krill daemon runs as user krill and stores its data in /var/lib/
krill.

You can check the status of Krill with:

sudo systemctl status krill

You can view the logs with:

sudo journalctl --unit=krill

If you have a machine with an amd64/x86_64 architecture running a RHEL (Red Hat Enterprise Linux)/CentOS 7 or
8 distribution, or a compatible OS such as Rocky Linux, you can install Krill from our software package repository.

To use this repository, create a file named /etc/yum.repos.d/nlnetlabs.repo, enter this configuration and save
it:

[nlnetlabs]
name=NLnet Labs
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/main/$basearch
enabled=1

Then run the following command to add the public key:

sudo rpm --import https://packages.nlnetlabs.nl/aptkey.asc

You can then install Krill by running:

sudo yum install -y krill

Review the generated configuration file at /etc/krill.conf. Pay particular attention to the service_uri and
admin_token settings. Tip: The configuration file was generated for you using the krillc config simple com-
mand.

Once happy with the settings use sudo systemctl enable --now krill to instruct systemd to enable the Krill
service at boot and to start it immediately. The krill daemon runs as user krill and stores its data in /var/lib/
krill.

You can check the status of Krill with:

sudo systemctl status krill

3.1. Quick Start 15

https://packages.nlnetlabs.nl

Krill User Manual

You can view the logs with:

sudo journalctl --unit=krill

Assuming you have a newly installed Debian or Ubuntu machine, you will need to install the C toolchain, OpenSSL
and Rust. You can then install Krill using:

sudo apt install curl build-essential libssl-dev openssl pkg-config
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
source ~/.cargo/env
cargo install --locked krill

3.2 Updating

Debian

Ubuntu

RHEL/CentOS

Cargo

To update an existing Krill installation, first update the repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy krill

You can upgrade an existing Krill installation to the latest version using:

sudo apt --only-upgrade install krill

To update an existing Krill installation, first update the repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy krill

You can upgrade an existing Krill installation to the latest version using:

sudo apt --only-upgrade install krill

To update an existing Krill installation, you can use this command to get an overview of the available versions:

sudo yum --showduplicates list krill

You can update to the latest version using:

sudo yum update -y krill

If you want to install the latest version of Krill using Cargo, it’s recommended to also update Rust to the latest version
first. Use the --force option to overwrite an existing version with the latest release:

16 Chapter 3. Install and Run

Krill User Manual

rustup update
cargo install --locked --force krill

3.3 Installing Specific Versions

Before every new release of Krill, one or more release candidates are provided for testing through every installation
method. You can also install a specific version, if needed.

Debian

Ubuntu

RHEL/CentOS

Cargo

If you would like to try out release candidates of Routinator you can add the proposed repository to the existing main
repository described earlier.

Assuming you already have followed the steps to install regular releases, run this command to add the additional
repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.
→˓list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available versions:

sudo apt policy krill

You can install a specific version using <package name>=<version>, e.g.:

sudo apt install krill=0.9.0~rc2-1buster

If you would like to try out release candidates of Krill you can add the proposed repository to the existing main repos-
itory described earlier.

Assuming you already have followed the steps to install regular releases, run this command to add the additional
repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.
→˓list > /dev/null

Make sure to update the apt package index:

sudo apt update

3.3. Installing Specific Versions 17

Krill User Manual

You can now use this command to get an overview of the available versions:

sudo apt policy krill

You can install a specific version using <package name>=<version>, e.g.:

sudo apt install krill=0.9.0~rc2-1bionic

To install release candidates of Routinator, create an additional repo file named /etc/yum.repos.d/
nlnetlabs-testing.repo, enter this configuration and save it:

[nlnetlabs-testing]
name=NLnet Labs Testing
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/proposed/$basearch
enabled=1

You can use this command to get an overview of the available versions:

sudo yum --showduplicates list krill

You can install a specific version using <package name>-<version info>, e.g.:

sudo yum install -y krill-0.9.0~rc2

All release versions of Krill, as well as release candidates, are available on crates.io, the Rust package registry. If you
want to install a specific version of Krill using Cargo, explicitly use the --version option. If needed, use the --force
option to overwrite an existing version:

cargo install --locked --force krill --version 0.9.0-rc2

All new features of Krill are built on a branch and merged via a pull request, allowing you to easily try them out using
Cargo. If you want to try the a specific branch from the repository you can use the --git and --branch options:

cargo install --git https://github.com/NLnetLabs/krill.git --branch main

For more installation options refer to the Cargo book.

3.4 Installing with Cargo

There are three things you need for Krill: Rust, a C toolchain and OpenSSL. You can install Krill on any Operating
System where you can fulfil these requirements, but we will assume that you will run this on a UNIX-like OS.

3.4.1 Rust

The Rust compiler runs on, and compiles to, a great number of platforms, though not all of them are equally supported.
The official Rust Platform Support page provides an overview of the various support levels.

While some system distributions include Rust as system packages, Krill relies on a relatively new version of Rust,
currently 1.45 or newer. We therefore suggest to use the canonical Rust installation via a tool called rustup.

To install rustup and Rust, simply do:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

18 Chapter 3. Install and Run

https://crates.io/crates/krill/versions
https://github.com/NLnetLabs/krill/pulls
https://doc.rust-lang.org/cargo/commands/cargo-install.html#install-options
https://forge.rust-lang.org/platform-support.html

Krill User Manual

Alternatively, visit the official Rust website for other installation methods.

You can update your Rust installation later by running:

rustup update

For some platforms, rustup cannot provide binary releases to install directly. The Rust Platform Support page lists
several platforms where official binary releases are not available, but Rust is still guaranteed to build. For these plat-
forms, automated tests are not run so it’s not guaranteed to produce a working build, but they often work to quite a
good degree.

One such example that is especially relevant for the routing community is OpenBSD. On this platform, patches are
required to get Rust running correctly, but these are well maintained and offer the latest version of Rust quite quickly.

Rust can be installed on OpenBSD by running:

pkg_add rust

Another example where the standard installation method does not work is CentOS 6, where you will end up with a long
list of error messages about missing assembler instructions. This is because the assembler shipped with CentOS 6 is
too old.

You can get the necessary version by installing the Developer Toolset 6 from the Software Collections repository. On
a virgin system, you can install Rust using these steps:

sudo yum install centos-release-scl
sudo yum install devtoolset-6
scl enable devtoolset-6 bash
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env

3.4.2 C Toolchain

Some of the libraries Krill depends on require a C toolchain to be present. Your system probably has some easy way
to install the minimum set of packages to build from C sources. For example, apt install build-essential will
install everything you need on Debian/Ubuntu.

If you are unsure, try to run cc on a command line and if there’s a complaint about missing input files, you are probably
good to go.

3.4.3 OpenSSL

Your system will likely have a package manager that will allow you to install OpenSSL in a few easy steps. For Krill,
you will need libssl-dev, sometimes called openssl-dev. On Debian-like Linux distributions, this should be as
simple as running:

apt install libssl-dev openssl pkg-config

3.4. Installing with Cargo 19

https://www.rust-lang.org/tools/install
https://forge.rust-lang.org/platform-support.html
https://github.com/openbsd/ports/tree/master/lang/rust/patches
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/
https://wiki.centos.org/AdditionalResources/Repositories/SCL

Krill User Manual

3.4.4 Building

The easiest way to get Krill v0.9.0 RC1 is to leave it to cargo by saying:

cargo install krill --git https://github.com/NLnetLabs/krill \
--tag v0.9.0-rc1 \
--locked

If you want to update an installed version, you run the same command but add the -f flag, a.k.a. force, to approve
overwriting the installed version.

The command will build Krill and install it in the same directory that cargo itself lives in, likely $HOME/.cargo/bin.
This means Krill will be in your path, too.

3.5 Generate Configuration File

After the installation has completed, there are just two things you need to configure before you can start using Krill.
First, you will need a data directory, which will store everything Krill needs to run. Secondly, you will need to create
a basic configuration file, specifying a secret token and the location of your data directory.

The first step is to choose where your data directory is going to live and to create it. In this example we are simply
creating it in our home directory.

mkdir ~/data

Krill can generate a basic configuration file for you. We are going to specify the two required directives, a secret token
and the path to the data directory, and then store it in this directory.

krillc config simple --token correct-horse-battery-staple --data ~/data/ > ~/data/krill.
→˓conf

Note: If you wish to run a self-hosted RPKI repository with Krill you will need to use a different krillc config
command. See Running a Publication Server for more details.

You can find a full example configuration file with defaults in the GitHub repository.

3.6 Start and Stop the Daemon

There is currently no standard script to start and stop Krill. You could use the following example script to start Krill.
Make sure to update the DATA_DIR variable to your real data directory, and make sure you saved your krill.conf
file there.

#!/bin/bash
KRILL="krill"
DATA_DIR="/path/to/data"
KRILL_PID="$DATA_DIR/krill.pid"
CONF="$DATA_DIR/krill.conf"
SCRIPT_OUT="$DATA_DIR/krill.log"

nohup $KRILL -c $CONF >$SCRIPT_OUT 2>&1 &
echo $! > $KRILL_PID

20 Chapter 3. Install and Run

https://github.com/NLnetLabs/krill/blob/master/defaults/krill.conf

Krill User Manual

You can use the following sample script to stop Krill:

#!/bin/bash
DATA_DIR="/path/to/data"
KRILL_PID="$DATA_DIR/krill.pid"

kill `cat $KRILL_PID`

3.6. Start and Stop the Daemon 21

Krill User Manual

22 Chapter 3. Install and Run

CHAPTER

FOUR

GET STARTED WITH KRILL

Before you can start managing your own ROAs you need to do a one time setup where you:

• create your CA

• connect to Publication Server

• connect to Parent CA (typically a Regional or National Internet Registry)

This can be easily achieved using the user interface. Connecting to the Publication Server and Parent CA is done by
exchanging a couple of XML files. After this initial setup, and you can simply manage your ROAs.

If you just want to try out Krill (or a new version) you can use the testbed provided by NLnet Labs for this.

If you are using the defaults you can access the user interface in a browser on the server running Krill at https://
localhost:3000. By default, Krill generates a self-signed TLS certificate, so you will have to accept the security
warning that your browser will give you.

If you want to access the UI, or use the CLI, from another computer, you can either set up a reverse proxy on your
server running Krill, or set up local port forwarding with SSH, for example:

ssh -L 3000:localhost:3000 user@krillserver.example.net

Here we will guide you through the set up process using the UI, but we will also link to the relevant subcommands of
the command line interface (CLI)

4.1 Login

Tip: To login to the web user interface using named users instead of the secret token, see Login with Named Users.

The login will ask you to enter the secret token you configured for Krill.

If you are using the CLI you will need to specify the token using the –token option. Because the CLI does not have a
session, you will need to specify this for each command, or you set the the KRILL_CLI_TOKEN environment variable
and save yourself the trouble of repeating it.

23

Krill User Manual

Fig. 1: Enter your secret token to access Krill

24 Chapter 4. Get Started with Krill

Krill User Manual

4.2 Create your Certification Authority

Next, you will see the Welcome screen where you can create your Certification Authority (CA). It will be used to
configure delegated RPKI with one or multiple parent CAs, usually your Regional or National Internet Registry.

The handle you select is not published in the RPKI but used as identification to parent and child CAs you interact with.
Please choose a handle that helps others recognise your organisation. Once set, the handle cannot be changed.

Fig. 2: Enter a handle for your Certification Authority

If you are using the CLI you can create your CA using the subcommand krillc add.

4.3 Repository Setup

Note: If you are a member of NIC.BR, ARIN or APNIC, then you’re in luck. These organisations provide an RPKI
Publication Server as a service to their members, so you can configure your Krill CA publish there.

If you need to run your own Publication Server then please have a look here to see how you can use Krill to achieve
this.

In either case the same process described below applies from your Krill CA’s perspective.

Before Krill can request a certificate from a parent CA, it will need to know where it will publish. You can add a parent

4.2. Create your Certification Authority 25

Krill User Manual

before configuring a repository for your CA, but in that case Krill will postpone requesting a certificate until you have
done so.

In order to register your CA as a publisher, you will need to copy the RFC 8183 Publisher Request XML and supply it
to your Publication Server. You can retrieve this file with the CLI subcommand krillc repo request, or you can simply
use the UI:

Fig. 3: Copy the publisher request XML or download the file

Your publication server provider will give you a repository response XML. You can use the CLI subcommand krillc
repo update to tell add this configuration to your CA, or you can simply use the UI:

Note: Migrating to a new Repository later is not supported through the web UI, but you can use the CLI to do this.

26 Chapter 4. Get Started with Krill

Krill User Manual

Fig. 4: Paste or upload the repository response XML

4.3. Repository Setup 27

Krill User Manual

4.4 Parent Setup

After successfully configuring the repository, the next step is to configure your parent CA. You will need to present
your CA’s RFC 8183 Child Request XML file to your parent. You can get this file using the CLI subcommand krillc
parents request, or you can simply use the UI:

Fig. 5: Copy the child request XML or download the file

Your RIR or NIR will provide you with a parent response XML. You can use the CLI subcommand krillc parents add
for this, or you can simply paste or upload it using the UI:

28 Chapter 4. Get Started with Krill

Krill User Manual

Fig. 6: Paste or upload the parent response XML

4.4. Parent Setup 29

Krill User Manual

30 Chapter 4. Get Started with Krill

CHAPTER

FIVE

RIR AND NIR INTERACTIONS

In almost all cases, you will interact with one or more Regional Internet Registries (RIRs) or National Internet Registries
(NIRs) when setting up delegated RPKI.

The fundamental principle is the same with each of them: the RIR or NIR needs to establish who you are, which
resources you are entitled to and where your RPKI certificate and ROAs will be published.

Your identity, permissions and entitlements are all managed by the registry and exposed via their respective member
portals. The rest of the information is exchanged in two XML files. You will need to provide a child request generated
by Krill, and in return you will receive a parent response that you need to give back to Krill. See Parent Setup for more
details.

5.1 Hosted Publication Server

Your RIR or NIR may also provide an RPKI publication server. You are free to publish your certificate and ROAs
anywhere you like, so a third party may provide an RPKI publication server as well. To use this service you will need
to do an additional exchange. You need to generate and provide a publisher request file and in return you will receive
a repository response.

Using an RPKI publication server relieves you of the responsibility to keep a public rsync and web server running at
all times to make your certificate and ROAs available to the world.

Of the five RIRs, APNIC and ARIN currently offer RPKI publication as a service for their members, upon request.
Most other RIRs have it on their roadmap. NIC.br, the Brazilian NIR, provides an RPKI repository server for their
members as well. If you need to publish your certificate and ROAs yourself, follow the steps described in the Running
a Publication Server section.

5.2 Member Portals

If you hold resources in one or more RIR or NIR regions, you will need to have access to the respective member portals
and the permission to configure delegated RPKI.

AFRINIC https://my.afrinic.net

APNIC https://myapnic.net

ARIN https://account.arin.net

LACNIC https://milacnic.lacnic.net

RIPE NCC https://my.ripe.net

Most RIRs have a few considerations to keep in mind.

31

https://my.afrinic.net
https://myapnic.net
https://account.arin.net
https://milacnic.lacnic.net
https://my.ripe.net

Krill User Manual

5.2.1 AFRINIC

AFRINIC have delegated RPKI available in their test environment, but it’s not operational yet.

5.2.2 APNIC

If you are already using the hosted RPKI service provided by APNIC and you would like to switch to delegated RPKI,
there is currently no option for this with MyAPNIC. Please open a ticket with the APNIC help desk to resolve this.

Please note that APNIC offers RPKI publication as a service. It is highly recommended to make use of this, as it
relieves you of the need to run a highly available repository yourself. We provide a step-by-step guide to set this up.

5.2.3 ARIN

If you are already using the hosted RPKI service provided by ARIN and you would like to switch to delegated RPKI,
there is currently no option for this with ARIN Online. Please open a ticket with the ARIN help desk to resolve this.

Please note that ARIN offers RPKI publication as a service. It is highly recommended to make use of this, as it relieves
you of the need to run a highly available repository yourself. We provide a step-by-step guide to set this up.

5.2.4 LACNIC

Although LACNIC offers delegated RPKI, it is not possible to configure this in their member portal yet. While the
procedures are still being defined, please open a ticket via hostmaster@lacnic.net to get started.

5.2.5 RIPE NCC

When you are a RIPE NCC member who does not have RPKI configured, you will be presented with a choice if you
would like to use hosted or non-hosted RPKI.

If you want to set up delegated RPKI with Krill, you will have to choose non-hosted. If you are already using the hosted
service and you would like to switch, then there is currently no option for that in the RIPE NCC portal.

Make a note of the ROAs you created and then send an email to rpki@ripe.net requesting your hosted CA to be deleted,
making sure to mention your registration id. After deletion, you will land on the setup screen from where you can
choose non-hosted RPKI.

32 Chapter 5. RIR and NIR Interactions

https://blog.nlnetlabs.nl/running-krill-under-apnic/
https://blog.nlnetlabs.nl/running-krill-under-arin/
mailto:hostmaster@lacnic.net
mailto:rpki@ripe.net

Krill User Manual

Fig. 1: RIPE NCC RPKI setup screen

5.2. Member Portals 33

Krill User Manual

34 Chapter 5. RIR and NIR Interactions

CHAPTER

SIX

MANAGE ROAS

Once you have successfully set up the parent and repository, you are now running delegated RPKI. You can now start
creating ROAs.

6.1 Show BGP Info

Krill automatically downloads BGP announcement information from RIPE RIS and uses this to analyse the known BGP
announcements for the address space on your resource certificate(s). This allows Krill to show the RPKI validation
status of your announcements, warn about possible issues, and do some suggestions on ROAs you may want to create
or remove.

Krill recognises the following ‘States’ in its analysis:

35

Krill User Manual

State Explanation
NOT FOUND This announcement is not covered by any of your ROAs
INVALID ASN

The prefix for this announcement is covered by one or
more of your ROAs.
However, none of those ROAs allow announcements of
this prefix by this ASN.

INVALID LENGTH

The ASN for this announcement is covered by one or
more of your ROAs.
However, the prefix is more specific than allowed.

SEEN

This is a ROA you created which allows at least one
known BGP announcement.
Note it may also disallow one or more other
announcements. You can show details
if you click on the ‘>’ icon.

TOO PERMISSIVE

This ROA uses the max length field to allow multiple
announcements, but
Krill does not see all most specific announcements in
its BGP information.

REDUNDANT

This is a ROA you created which is included in full by
at least one other ROA
you created. I.e. you have a ROA for the same ASN,
covering this prefix and
including the maximum length.

NOT SEEN

This is a ROA you created but it does not cover any
known announcements. This
may be a ROA you created for a backup or planned
announcement. On the other
hand, this could also be a stale ROA in which case it is
better to remove it.

DISALLOWING

This is a ROA for which no allowed announcements are
seen, yet it disallows one
or more announcements. If this is done on purpose it
may be better to create
a ROA for ASN 0 instead.

AS0

This is a ROA you created for a prefix with ASN 0.
Since ASN 0 cannot occur
in BGP such ROAs are effectively used to disallow
announcements of prefixes
on the global BGP table.

REDUNDANT (AS0)

An AS0 ROA is considered redundant in case you have
at least one ROA covering
the entire prefix for a real ASN. In such cases this ROA
does not provide any
further protection on top of that existing ROA.

PREFIX REMOVED ROA cannot be published, its prefix is no longer on your
certificate(s)

36 Chapter 6. Manage ROAs

Krill User Manual

If you just set up your Krill instance you will see that your announcements all have the status NOT FOUND, meaning that
you have not created any ROAs covering them yet.

Fig. 1: When you first start, all your announcements are ‘NOT FOUND’

6.2 ROA Suggestions

Warning: You should always verify the suggestions done by Krill. Krill bases its analysis on infor-
mation collected by the RIPE NCC Routing Information Service (RIS) and saved in aggregated dumps
every 8 hours. So, the announcements that Krill sees may be outdated. More importantly they may
include announcements by others that you do NOT wish to allow. And you may not see your own
announcements if you inadvertently invalidated them, because such announcements are often rejected
and therefore may not reach the RIS Route Collectors.

We plan to add support to use other data sources in future, which will allow you to inform Krill about
the announcements that you do on your own eBGP sessions.

If you click Analyse my ROAs under the table in the ROAs tab, Krill will suggest the following changes for the following
‘State’ values:

6.2. ROA Suggestions 37

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
http://www.ris.ripe.net/dumps/

Krill User Manual

State Add/Remove Notes
NOT FOUND Add
INVALID ASN Add

Be careful when adding a ROA for
a new ASN. The information
is based on what is seen in BGP, but
this may include
malicious or accidental hijacks that
you do NOT wish to
allow.

NOTE: Krill will not suggest to
allow announcements for a new
ASN if you created an AS0 ROA
for the prefix.

INVALID LENGTH Add

If you are sure that this
announcement is valid, then you
should
create a ROA for it. However, there
is a (remote) chance that
this is a malicious hijack where
your ASN was prepended. In
such cases you should of course
NOT allow it.

TOO PERMISSIVE BOTH

Krill will suggest to remove the
permissive ROA and replace it
with ROAs for all specific
announcements presently seen in
BGP.
This is inline with
recommendations in this draft in the
IETF.
However, if you need to
pre-provision specific
announcements
from your ASN, e.g. for anti DDoS
purposes, then you may wish
to keep the permissive ROA as is.

DISALLOWING Remove

If you want to create a ROA to
disallow announcements then it
may be better to create an AS0
ROA instead.

NOT SEEN Remove Keep the ROA if it is for a planned
or backup announcement.

REDUNDANT Remove
PREFIX REMOVED Remove

Keep the ROA if you believe that
your prefix will be re-added by
any parent.

38 Chapter 6. Manage ROAs

https://tools.ietf.org/html/draft-ietf-sidrops-rpkimaxlen
https://tools.ietf.org/html/draft-ietf-sidrops-rpkimaxlen

Krill User Manual

6.3 Add a ROA

Click the Add ROA button, then fill in the authorised ASN and one of your prefixes in the form. The maximum prefix
length will automatically match the prefix you entered to follow best operational practices, but you can change it as
desired.

Fig. 2: Adding a new ROA

If you prefer to use the CLI then you can manage ROAs using the subcommand krillc roas.

6.4 Disable BGP Info

If you disable the Show BGP Info toggle, Krill will just show you your plain ROAs. You can also disable downloading
the RIS dump files altogether if you set the following directive in your krill.conf file:

bgp_risdumps_enabled = false

6.3. Add a ROA 39

Krill User Manual

40 Chapter 6. Manage ROAs

CHAPTER

SEVEN

MONITORING

7.1 Prometheus

The HTTPS server in Krill provides endpoints for monitoring the application. A data format specifically for Prometheus
is available and dedicated port 9657 has been reserved.

On the /metrics path, Krill will expose a lot of details. Generating these metrics is not particularly hard on Krill,
but in case you have many CAs, children or publishers under your Krill instance you may still want to disable certain
metrics to reduce the amount of data fetched and stored by Prometheus.

7.1.1 General Metrics

The following are always enabled:

HELP krill_server_start unix timestamp in seconds of last krill server start
TYPE krill_server_start gauge
krill_server_start 1631542209

HELP krill_version_major krill server major version number
TYPE krill_version_major gauge
krill_version_major 0

HELP krill_version_minor krill server minor version number
TYPE krill_version_minor gauge
krill_version_minor 9

HELP krill_version_patch krill server patch version number
TYPE krill_version_patch gauge
krill_version_patch 2

HELP krill_auth_session_cache_size total number of cached login session tokens
TYPE krill_auth_session_cache_size gauge
krill_auth_session_cache_size 0

HELP krill_cas number of cas in krill
TYPE krill_cas gauge
krill_cas 6

41

https://prometheus.io/
https://github.com/prometheus/prometheus/wiki/Default-port-allocations

Krill User Manual

7.1.2 CA Metrics

There are a number of metrics which use a label like {ca=”ca_name”}. You can disable all of them by setting the
following in your configuration file:

metrics_hide_ca_details = true

Example:

HELP krill_ca_parent_success status of last CA to parent connection (0=issue,␣
→˓1=success)
TYPE krill_ca_parent_success gauge
krill_ca_parent_success{ca="CA1", parent="testbed"} 1
krill_ca_parent_success{ca="ca", parent="testbed"} 1
krill_ca_parent_success{ca="CA2", parent="testbed"} 1
krill_ca_parent_success{ca="testbed", parent="ta"} 1
krill_ca_parent_success{ca="dummy_ca", parent="testbed"} 1

HELP krill_ca_parent_last_success_time unix timestamp in seconds of last successful CA␣
→˓to parent connection
TYPE krill_ca_parent_last_success_time gauge
krill_ca_parent_last_success_time{ca="CA1", parent="testbed"} 1631542800
krill_ca_parent_last_success_time{ca="ca", parent="testbed"} 1631542800
krill_ca_parent_last_success_time{ca="CA2", parent="testbed"} 1631542800
krill_ca_parent_last_success_time{ca="testbed", parent="ta"} 1631542800

HELP krill_ca_ps_success status of last CA to Publication Server connection (0=issue,␣
→˓1=success)
TYPE krill_ca_ps_success gauge
krill_ca_ps_success{ca="CA1"} 1
krill_ca_ps_success{ca="ca"} 1
krill_ca_ps_success{ca="CA2"} 1
krill_ca_ps_success{ca="ta"} 1
krill_ca_ps_success{ca="testbed"} 1
krill_ca_ps_success{ca="dummy_ca"} 0

HELP krill_ca_ps_last_success_time unix timestamp in seconds of last successful CA to␣
→˓Publication Server connection
TYPE krill_ca_ps_last_success_time gauge
krill_ca_ps_last_success_time{ca="CA1"} 1631542801
krill_ca_ps_last_success_time{ca="ca"} 1631542802
krill_ca_ps_last_success_time{ca="CA2"} 1631542802
krill_ca_ps_last_success_time{ca="ta"} 1631542801
krill_ca_ps_last_success_time{ca="testbed"} 1631542802

HELP krill_ca_ps_next_planned_time unix timestamp in seconds of next planned CA to␣
→˓Publication Server connection (unless e.g. ROAs are changed)
TYPE krill_ca_ps_next_planned_time gauge
krill_ca_ps_next_planned_time{ca="CA1"} 1631600401
krill_ca_ps_next_planned_time{ca="ca"} 1631600402
krill_ca_ps_next_planned_time{ca="CA2"} 1631600402
krill_ca_ps_next_planned_time{ca="ta"} 1631600401
krill_ca_ps_next_planned_time{ca="testbed"} 1631600402
krill_ca_ps_next_planned_time{ca="dummy_ca"} 1631543137

42 Chapter 7. Monitoring

Krill User Manual

7.1.3 Child metrics

NOTE: These metrics are only shown if you have any child CAs under your CA(s) in Krill.

By default Krill will also show metrics on child CAs for each CA. If you left the showing CA details enabled, but you
wish to hide these details then you can do so by setting the following directive in your configuration file:

metrics_hide_child_details = true

Example:

HELP krill_ca_child_success status of last child to CA connection (0=issue, 1=success)
TYPE krill_ca_child_success gauge
krill_ca_child_success{ca="ta", child="testbed"} 1
krill_ca_child_success{ca="testbed", child="ca"} 1
krill_ca_child_success{ca="testbed", child="CA1"} 1
krill_ca_child_success{ca="testbed", child="CA2"} 1

HELP krill_ca_child_state child state (see 'suspend_child_after_inactive_hours'␣
→˓config) (0=suspended, 1=active)
TYPE krill_ca_child_state gauge
krill_ca_child_state{ca="ta", child="testbed"} 0
krill_ca_child_state{ca="testbed", child="ca"} 0
krill_ca_child_state{ca="testbed", child="CA1"} 0
krill_ca_child_state{ca="testbed", child="CA2"} 0

HELP krill_ca_child_last_connection unix timestamp in seconds of last child to CA␣
→˓connection
TYPE krill_ca_child_last_connection gauge
krill_ca_child_last_connection{ca="ta", child="testbed"} 1631542800
krill_ca_child_last_connection{ca="testbed", child="ca"} 1631542800
krill_ca_child_last_connection{ca="testbed", child="CA1"} 1631542800
krill_ca_child_last_connection{ca="testbed", child="CA2"} 1631542800

HELP krill_ca_child_last_success unix timestamp in seconds of last successful child to␣
→˓CA connection
TYPE krill_ca_child_last_success gauge
krill_ca_child_last_success{ca="ta", child="testbed"} 1631542800
krill_ca_child_last_success{ca="testbed", child="ca"} 1631542800
krill_ca_child_last_success{ca="testbed", child="CA1"} 1631542800
krill_ca_child_last_success{ca="testbed", child="CA2"} 1631542800

HELP krill_ca_child_agent_total total children per user agent based on their last␣
→˓connection
TYPE krill_ca_child_agent_total gauge
krill_ca_child_agent_total{ca="ta", user_agent="krill/0.9.2-rc1"} 1
krill_ca_child_agent_total{ca="testbed", user_agent="krill/0.9.2-rc1"} 3

7.1. Prometheus 43

Krill User Manual

7.1.4 ROA Metrics

By default Krill will also show metrics on ROAs in relation to known BGP announcements for each CA. If you left the
showing CA details enabled, but you wish to hide these details then you can do so by setting the following directive in
your configuration file:

metrics_hide_roa_details = true

Example:

HELP krill_cas_bgp_announcements_valid number of announcements seen for CA resources␣
→˓with RPKI state VALID
TYPE krill_cas_bgp_announcements_valid gauge
krill_cas_bgp_announcements_valid{ca="CA1"} 0
krill_cas_bgp_announcements_valid{ca="ca"} 2
krill_cas_bgp_announcements_valid{ca="CA2"} 0
krill_cas_bgp_announcements_valid{ca="testbed"} 0
krill_cas_bgp_announcements_valid{ca="ta"} 0
krill_cas_bgp_announcements_valid{ca="dummy_ca"} 0

HELP krill_cas_bgp_announcements_invalid_asn number of announcements seen for CA␣
→˓resources with RPKI state INVALID (ASN mismatch)
TYPE krill_cas_bgp_announcements_invalid_asn gauge
krill_cas_bgp_announcements_invalid_asn{ca="dummy_ca"} 0
krill_cas_bgp_announcements_invalid_asn{ca="testbed"} 0
krill_cas_bgp_announcements_invalid_asn{ca="CA2"} 0
krill_cas_bgp_announcements_invalid_asn{ca="CA1"} 0
krill_cas_bgp_announcements_invalid_asn{ca="ta"} 0
krill_cas_bgp_announcements_invalid_asn{ca="ca"} 1

HELP krill_cas_bgp_announcements_invalid_length number of announcements seen for CA␣
→˓resources with RPKI state INVALID (prefix exceeds max length)
TYPE krill_cas_bgp_announcements_invalid_length gauge
krill_cas_bgp_announcements_invalid_length{ca="testbed"} 0
krill_cas_bgp_announcements_invalid_length{ca="dummy_ca"} 0
krill_cas_bgp_announcements_invalid_length{ca="ta"} 0
krill_cas_bgp_announcements_invalid_length{ca="CA2"} 0
krill_cas_bgp_announcements_invalid_length{ca="ca"} 0
krill_cas_bgp_announcements_invalid_length{ca="CA1"} 0

HELP krill_cas_bgp_announcements_not_found number of announcements seen for CA␣
→˓resources with RPKI state NOT FOUND (none of the CA's ROAs cover this)
TYPE krill_cas_bgp_announcements_not_found gauge
krill_cas_bgp_announcements_not_found{ca="CA2"} 0
krill_cas_bgp_announcements_not_found{ca="ta"} 0
krill_cas_bgp_announcements_not_found{ca="ca"} 0
krill_cas_bgp_announcements_not_found{ca="dummy_ca"} 0
krill_cas_bgp_announcements_not_found{ca="CA1"} 5
krill_cas_bgp_announcements_not_found{ca="testbed"} 0

HELP krill_cas_bgp_roas_too_permissive number of ROAs for this CA which allow excess␣
→˓announcements (0 may also indicate that no BGP info is available)
TYPE krill_cas_bgp_roas_too_permissive gauge
krill_cas_bgp_roas_too_permissive{ca="ca"} 0

(continues on next page)

44 Chapter 7. Monitoring

Krill User Manual

(continued from previous page)

krill_cas_bgp_roas_too_permissive{ca="testbed"} 0
krill_cas_bgp_roas_too_permissive{ca="CA1"} 0
krill_cas_bgp_roas_too_permissive{ca="dummy_ca"} 0
krill_cas_bgp_roas_too_permissive{ca="ta"} 0
krill_cas_bgp_roas_too_permissive{ca="CA2"} 0

HELP krill_cas_bgp_roas_redundant number of ROAs for this CA which are redundant (0␣
→˓may also indicate that no BGP info is available)
TYPE krill_cas_bgp_roas_redundant gauge
krill_cas_bgp_roas_redundant{ca="ta"} 0
krill_cas_bgp_roas_redundant{ca="testbed"} 0
krill_cas_bgp_roas_redundant{ca="ca"} 0
krill_cas_bgp_roas_redundant{ca="dummy_ca"} 0
krill_cas_bgp_roas_redundant{ca="CA1"} 0
krill_cas_bgp_roas_redundant{ca="CA2"} 0

HELP krill_cas_bgp_roas_stale number of ROAs for this CA for which no announcements␣
→˓are seen (0 may also indicate that no BGP info is available)
TYPE krill_cas_bgp_roas_stale gauge
krill_cas_bgp_roas_stale{ca="CA1"} 0
krill_cas_bgp_roas_stale{ca="CA2"} 0
krill_cas_bgp_roas_stale{ca="ca"} 0
krill_cas_bgp_roas_stale{ca="ta"} 0
krill_cas_bgp_roas_stale{ca="testbed"} 0
krill_cas_bgp_roas_stale{ca="dummy_ca"} 0

HELP krill_cas_bgp_roas_total total number of ROAs for this CA
TYPE krill_cas_bgp_roas_stale gauge
krill_cas_bgp_roas_total{ca="dummy_ca"} 0
krill_cas_bgp_roas_total{ca="ca"} 3
krill_cas_bgp_roas_total{ca="CA1"} 0
krill_cas_bgp_roas_total{ca="ta"} 0
krill_cas_bgp_roas_total{ca="testbed"} 0
krill_cas_bgp_roas_total{ca="CA2"} 0

7.1.5 Publication Server Metrics

The following metrics are always enabled if you have an active Publication Server:

HELP krill_repo_publisher number of publishers in repository
TYPE krill_repo_publisher gauge
krill_repo_publisher 6

HELP krill_repo_rrdp_last_update unix timestamp in seconds of last update by any␣
→˓publisher
TYPE krill_repo_rrdp_last_update gauge
krill_repo_rrdp_last_update 1631542802

HELP krill_repo_rrdp_serial RRDP serial
TYPE krill_repo_rrdp_serial counter
krill_repo_rrdp_serial 5

7.1. Prometheus 45

Krill User Manual

By default per publisher (publishing CA) metrics are also included, this can be disabled by setting the following directive
in your configuration file:

metrics_hide_publisher_details = true

Example:

HELP krill_repo_objects number of objects in repository for publisher
TYPE krill_repo_objects gauge
krill_repo_objects{publisher="ta"} 3
krill_repo_objects{publisher="mos-eisley"} 4
krill_repo_objects{publisher="testbed"} 5
krill_repo_objects{publisher="CA1"} 2
krill_repo_objects{publisher="CA2"} 2
krill_repo_objects{publisher="dummy_ca"} 0

HELP krill_repo_size size of objects in bytes in repository for publisher
TYPE krill_repo_size gauge
krill_repo_size{publisher="ta"} 7592
krill_repo_size{publisher="mos-eisley"} 10056
krill_repo_size{publisher="testbed"} 9988
krill_repo_size{publisher="CA1"} 3744
krill_repo_size{publisher="CA2"} 3744
krill_repo_size{publisher="dummy_ca"} 0

HELP krill_repo_last_update unix timestamp in seconds of last update for publisher
TYPE krill_repo_last_update gauge
krill_repo_last_update{publisher="ta"} 1631542801
krill_repo_last_update{publisher="mos-eisley"} 1631542802
krill_repo_last_update{publisher="testbed"} 1631542802
krill_repo_last_update{publisher="CA1"} 1631542801
krill_repo_last_update{publisher="CA2"} 1631542802
krill_repo_last_update{publisher="dummy_ca"} 1628062124

7.2 Stats Endpoints

The monitoring service has a number of additional endpoints which can be accessed without the need for authentication
on the following paths:

/stats/info Returns the Krill version and timestamp when the daemon was started.

/stats/cas Returns stats on your CAs, including an analysis of ROA configurations based on
known BGP announcements.

/stats/repo Returns stats on the repository, if enabled. This includes publisher stats: number
and size of objects and last connection time.

46 Chapter 7. Monitoring

CHAPTER

EIGHT

USING THE CLI OR API

8.1 Introduction

Every function of Krill can be controlled from the command line interface (CLI). The Krill CLI is a wrapper around
the API which is based on JSON over HTTPS.

We will document all current functions below, providing examples of both the CLI and API.

Note that you can use the CLI from another machine, but then you will need to set up a proxy server in front of Krill
and make sure that it has a real TLS certificate.

To use the CLI you need to invoke krillc followed by one or more subcommands, and some arguments. Help is
built-in:

USAGE:
krillc <subcommand..> [FLAGS] [OPTIONS]

FLAGS:
--api Only show the API call and exit. Or set env: KRILL_CLI_API=1

-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-c, --ca <name> The name of the CA you wish to control. Or set env: KRILL_

→˓CLI_MY_CA
-f, --format <type> Report format: none|json|text (default). Or set env: KRILL_

→˓CLI_FORMAT
-s, --server <URI> The full URI to the krill server. Or set env: KRILL_CLI_

→˓SERVER
-t, --token <string> The secret token for the krill server. Or set env: KRILL_CLI_

→˓TOKEN

47

Krill User Manual

8.2 Setting Defaults

As noted in the OPTIONS help text above you can set default values via environment variables for the most common
arguments that need to be supplied to krillc subcommands. When setting environment variables note the following
requirements:

• KRILL_CLI_SERVER must be in the form https://<host:port>/.

• KRILL_CLI_MY_CA must consist only of alphanumeric characters, dashes and underscores, i.e. a-zA-Z0-9_.

For example:

export KRILL_CLI_TOKEN="correct-horse-battery-staple"
export KRILL_CLI_MY_CA="Acme-Corp-Intl"

If you do use the command line argument equivalents, you will override whatever value you set in the ENV. Krill will
give you a friendly error message if you did not set the applicable ENV variable, and don’t include the command line
argument equivalent.

8.3 Explore the API

The reference below documents the available krillc subcommands and the equivalent API functions by example.

You can also explore the CLI and API yourself:

• Each subcommand can be prefixed with help to access the CLI built-in help

• You can always use --api argument to make the CLI print out the API call that it would do, without actually
sending it to the server.

• You can use --format=json to have the API print out the JSON returned by the server without reformatting
or filtering information. Of course, be careful if you use this option for subcommands with side-effects, such as
krillc delete --ca <ca>

If you want a to have a safe sandbox environment to test your Krill CA and really explore the API, then we recommend
that you set up a local Krill testbed as described in Running a Krill Test Environment.

Tip: Click subcommand names in this section to jump to its detailed description.

Subcommands for managing your Krill server:

config Creates a configuration file for krill and prints it to STDOUT
health Perform an authenticated health check
info Show server info

Subcommands for adding / removing CA instances in your Krill server:

add Add a new CA
delete Delete a CA and let it withdraw its objects and request revocation.␣
→˓WARNING: Irreversible!
list List the current CAs

Subcommands for initialising a CA:

parents Manage parents for a CA.
repo Manage the repository for a CA.

Subcommands for showing the details of a CA:

48 Chapter 8. Using the CLI or API

Krill User Manual

show Show details of a CA.
issues Show issues for a CA
history Show the history of a CA

Manage ROAs:

roas Manage ROAs for a CA.

Other operations:

bulk Manually trigger refresh/republish/resync for all CAs
children Manage children for a CA
keyroll Perform a manual key rollover for a CA

8.4 krillc config

This subcommand is implemented on the CLI only and is intended to help generate a configuration file which can be
used for your Krill server.

We currently support two subcommands for this: krillc config simple and krillc config user. The first can be used to
generate general server configuration. The second can be used to generate user (id) entries to use if you want to have
multiple local users access the Krill UI by their own name and password.

8.5 krillc health

Perform an authenticated health check. Verifies that the specified Krill server can be connected to, is able to verify the
specified token and is, at least thus far, healthy. This does NOT check whether your CAs have any issues, please have
a look at the issues subcommand for this.

Can be used in automation scripts by checking the exit code:

Exit Code Meaning
0 the Krill server appears to be healthy.
non-zero incorrect server URI, token, connection failure or server error.

Example CLI:

$ krillc health
$ echo $?
0

Example API:

$ krillc health --api
GET:
https://localhost:3000/api/v1/authorized

Headers:
Authorization: Bearer secret

If you need to do an unauthorized health check, then you can just call the following endpoint instead. This will always
return a 200 OK response if the server is running:

8.4. krillc config 49

Krill User Manual

GET:
https://localhost:3000/health

8.6 krillc info

Show server info. Prints the version of the Krill server and the date and time that it was last started, e.g.:

Example CLI:

$ krillc info
Version: 0.9.0
Started: 2021-04-07T12:36:00+00:00

Example API call:

$ krillc info --api
GET:
https://localhost:3000/stats/info

Headers:
Authorization: Bearer secret

Example API resonse:

{
"version": "0.9.0",
"started": 1617798960

}

8.7 krillc add

Adds a new CA.

When adding a CA you need to choose a handle, essentially just a name. The term “handle” comes from RFC 8183
and is used in the communication protocol between parent and child CAs, as well as CAs and publication servers. The
handle may consist of alphanumeric characters, dashes and underscores, i.e. a-zA-Z0-9_.

The handle you select is not published in the RPKI but used as identification to parent and child CAs you interact with.
You should choose a handle that helps others recognise your organisation. Once set, the handle cannot be be changed
as it would interfere with the communication between parent and child CAs, as well as the publication repository.

When a CA has been added, it is registered to publish locally in the Krill instance where it exists, but other than that
it has no configuration yet. In order to do anything useful with a CA you will first have to add at least one parent to it,
followed by some Route Origin Authorisations and/or child CAs.

Example CLI:

$ krillc add --ca newca

Example API:

50 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

$ krillc add --ca newca --api
POST:
https://localhost:3000/api/v1/cas

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"handle": "newca"

}

The API response is an empty 200 OK response, unless an issue occurred - e.g. the handle was already in use:

{"label":"ca-duplicate","msg":"CA 'newca' was already initialised","args":{"ca":"newca"}}

8.8 krillc delete

Deletes a CA in your Krill server. The CA will try (best effort) to request revocation of its current certificates from its
parents, and withdraw its objects from its repository.

Warning: This action is irreversible!

Example CLI:

$ krillc delete --ca ca

Example API:

$ krillc delete --ca ca --api
DELETE:

https://localhost:3000/api/v1/cas/ca
Headers:

Authorization: Bearer secret

The API response is an empty 200 OK response, unless an issue occurred - e.g. the CA is not known:

{"label":"ca-unknown","msg":"CA 'unknown' is unknown","args":{"ca":"unknown"}}

8.8. krillc delete 51

Krill User Manual

8.9 krillc list

List the current CAs.

Example CLI:

$ krillc list
testbed
ta

Example API:

$ krillc list --api
GET:
https://localhost:3000/api/v1/cas

Headers:
Authorization: Bearer secret

Example API response:

{
"cas": [
{
"handle": "testbed"

},
{
"handle": "ta"

}
]

}

8.10 krillc parents

Manage parents for a CA. You will need to add at least one parent, and a repository (see below), before your CA can
request any resource certificate.

The Krill CLI and API have a number of subcommands to manage CA parents:

request Show RFC8183 Publisher Request XML
add Add a parent to this CA
statuses Show overview of all parent statuses of a CA
contact Show contact information for a parent of this CA
remove Remove an existing parent from this CA

52 Chapter 8. Using the CLI or API

Krill User Manual

8.11 krillc parents request

Before you can add a parent to any CA, you will need to present an RFC 8183 Publisher Request XML to that parent.
Their response XML can then be used to add them as a parent.

For more information on how this is done through the UI see: Parent Setup.

Example CLI:

$ krillc parents request --ca newca
<child_request xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1" child_
→˓handle="newca">
<child_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=</child_bpki_
→˓ta>
</child_request>

The API can be called to return the Publisher Request in XML format if you use the following path scheme:

GET:
https://localhost:3000/api/v1/cas/newca/id/child_request.xml

Headers:
Authorization: Bearer secret

The API also supports a JSON equivalent of the response if the child_request.json is requested instead:

GET:
https://localhost:3000/api/v1/cas/newca/id/child_request.json

Headers:
Authorization: Bearer secret

8.12 krillc parents add

Add a parent to a CA. Or update the information for an existing parent.

In order to add a parent to a CA you will need to present the RFC 8183 Parent Response. You will usually get this
response in the standard RFC XML format. The Krill API supports submitting this file in its plain XML form, in which
case the local name for the parent - i.e. the name that your CA will use for it in the presentation to you - will be derived
from the path, or if it is not supplied there from the parent_handle in the XML.

The API also supports a JSON format where the parent local handle can be explicitly specified. If you use the CLI then
it will expect that you provide this local handle, parse a supplied XML file, and then combine both in a JSON body
sent to the server:

8.11. krillc parents request 53

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

$ krillc parents add --parent my_parent --response ./data/new-ca-parent-response.xml --
→˓api
POST:
https://localhost:3000/api/v1/cas/ca/parents

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"handle": "my_parent",
"contact": {
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",

"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://localhost:3000/rfc6492/testbed"

}
}

Note that whichever handle you choose, your CA will use the handles that the parent response included for itself and
for your CA in its communication with this parent. I.e. you may want to inspect the response and use the same handle
for the parent (parent_handle attribute), and do not be surprised or alarmed if the parent refers to your ca (child_handle
attribute) by some seemingly random name. Some parents do this to ensure uniqueness.

In case you have multiple parents you may want to refer to them by names that make sense in your context, or to avoid
name collisions in case they all like to go by the same the name.

In order to specify the parent ‘handle’ on the path it can simply be added as a path parameter in the call. This is
primarily intended for XML in which case the path argument will be taken from here. If you submit a JSON body and
specify a the handle as path parameter, then Krill will return an error in case the handles do not match.

Important: The API path for ADDING a parent is the same as the API path for updating a parent. This means that
adding the same parent multiple times is idempotent. If you are unsure about The parents that your CA currently has,
then have a look at the show subcommand.

54 Chapter 8. Using the CLI or API

Krill User Manual

8.13 krillc parents statuses

Show the current status between a CA and all of its parents.

Warning: This command will return an empty result if you did not yet configure a repository for the CA. This is
because Krill will not even attempt to contact parent CAs until it knows which URIs to use in certificate requests.

Example CLI:

$ krillc parents statuses --ca newca
Parent: my_parent
URI: https://localhost:3000/rfc8181/localname/
Status: success
Last contacted: 2021-04-08T11:20:00+00:00
Resource Entitlements: asn: AS65000, ipv4: 10.0.0.0/8, ipv6: 2001:db8::/32
resource class: 0
entitled resources: asn: 'AS65000', ipv4: '10.0.0.0/8', ipv6: '2001:db8::/32'
entitled not after: 2023-03-15T14:23:57+00:00
issuing cert uri: rsync://localhost/repo/ta/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.

→˓cer
issuing cert PEM:

-----BEGIN CERTIFICATE-----
MIIFKzCCBBOgAwIBA...
-----END CERTIFICATE-----

received certificate(s):
published at: rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer
resources: asn: AS65000, v4: 10.0.0.0/8, v6: 2001:db8::/32
cert PEM:

-----BEGIN CERTIFICATE-----
MIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp
-----END CERTIFICATE-----

Note that in case there are any issues, i.e. the status is “failure” then Krill will keep trying to resynchronise the CA
with this parent automatically. There is usually no need to trigger this manually before the next planned contact, but
you can use krillc bulk refresh if you are debugging an issue.

The JSON response returned by the server contains some additional information, in particular about the certificates
used by parent CAs to sign the certificates of your CA:

8.13. krillc parents statuses 55

Krill User Manual

{
"my_parent": {
"last_exchange": {
"timestamp": 1617881400,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"last_success": 1617881400,
"all_resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"classes": [

{
"class_name": "0",
"resource_set": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"not_after": "2023-03-15T14:23:57Z",
"issued_certs": [
{
"uri": "rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",
"req_limit": {},
"cert": "MII..."

}
],
"signing_cert": {
"url": "rsync://localhost/repo/ta/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.

→˓cer",
"cert": "MII..."

}
}

]
}

}

Example API:

$ krillc parents statuses --ca newca --api
GET:
https://localhost:3000/api/v1/cas/newca/parents

Headers:
Authorization: Bearer secret

56 Chapter 8. Using the CLI or API

Krill User Manual

8.14 krillc parents contact

Show contact information for a parent of this CA.

This can be useful for verifying that the parent contact information matches the RFC 8183 Parent Response that is
expected for the given parent.

The API returns the response in JSON format, but this is converted to XML by the CLI when the default text format is
used.

$ krillc parents contact --ca newca --parent my_parent

Here we will show the JSON output:

{
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",
"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://localhost:3000/rfc6492/testbed"

}

Example API:

$ krillc parents contact --ca newca --parent my_parent --api
GET:
https://localhost:3000/api/v1/cas/newca/parents/my_parent

Headers:
Authorization: Bearer secret

8.15 krillc parents remove

Remove an existing parent from this CA.

The CA will do a best effort attempt to request revocation of any certificate received under the parent - meaning that if
the parent cannot be reached the operation just continues without error. After all a parent may well be removed because
it is no longer reachable. Furthermore any RPKI published under those certificate(s) will be withdrawn.

Note that although revocations are requested the parent may not be aware that they have been removed. You may want
to notify them through different channels. The RPKI provisioning protocol RFC 6492 does not have verbs by which a
child CA can ask the parent to be removed completely.

8.14. krillc parents contact 57

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc6492.html

Krill User Manual

Example CLI:

$ krillc parents remove --ca newca --parent my_parent

Example API:

$ krillc parents remove --ca newca --parent my_parent --api
DELETE:
https://localhost:3000/api/v1/cas/newca/parents/my_parent

Headers:
Authorization: Bearer secret

8.16 krillc repo

Manage the repository where a CA will publish its objects. There are a number of subcommands provided for this:

USAGE:
krillc repo [SUBCOMMAND]

SUBCOMMANDS:
request Show RFC8183 Publisher Request
configure Configure which repository this CA uses
show Show current repo config
status Show current repo status

8.17 krillc repo request

Show the RFC 8183 Publisher Request XML for a CA. You will need to hand this over to your repository so that they
can add your CA.

Example CLI:

$ krillc repo request --ca newca
<publisher_request xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1"␣
→˓publisher_handle="newca">
<publisher_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=</publisher_
→˓bpki_ta>
</publisher_request>

58 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

The CLI will present the Publisher Request in its RFC XML format by default. The API supports both the XML and
an equivalent JSON format dependent on the file extension used in the request URI:

XML:

GET:
https://localhost:3000/api/v1/cas/newca/id/publisher_request.xml

Headers:
Authorization: Bearer secret

JSON:

GET:
https://localhost:3000/api/v1/cas/newca/id/publisher_request.json

Headers:
Authorization: Bearer secret

8.18 krillc repo configure

This is used to configure the repository used by a CA.

Your CA needs a repository configuration before it will request any certificates from parents. You can chose to configure
a repository first and then add the first parent to your CA, or vice versa. The order does not matter, but both are needed
for your CA to function.

You can use the CLI to configure a repository by submitting the RFC 8183 Repository Response XML to your CA.
Before committing the configuration Krill checks whether the Publication Server can be reached and responds to a
query sent by your CA. If this fails, then an error is reported and the configuration is aborted. You can try again when
you think the issue has been resolved.

Example CLI:

$ krillc repo configure --ca newca --response ./data/new-ca-repository-response.xml

The API will accept the plain RFC 8183 Repository Response XML if it’s posted to the API path for the CA in question,
but the CLI will post the XML formatted as its JSON equivalent:

Example API:

$ krillc repo configure --ca newca --response ./data/new-ca-repository-response.xml --api
POST:
https://localhost:3000/api/v1/cas/newca/repo

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"repository_response": {
"tag": null,
"publisher_handle": "localname",
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg4OEJBMzA2QkMzMUVFRkU3NzRDNzYzRUY1N0VBNUZEQzdBMTlERTI1MB4XDTIxMDMyOTA3NTg0M1oXDTM2MDMyOTA4MDM0M1owMzExMC8GA1UEAxMoODhCQTMwNkJDMzFFRUZFNzc0Qzc2M0VGNTdFQTVGREM3QTE5REUyNTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAORLpfOKS8M2QGBto1OdnDYdrgjxJeF+uU7mJLgqTT3l5NbkOXxgPClUqbbbfp/
→˓c7x5sy3JbmUWaQHtkl6N9l8vcRlQQfhk0vwlVCHcQQrcMViJ5GmGtEjo7+Uf9e0TDA+rrkdqOkpOLcGRKjs1SZNqCRktubQU7Ndc0ICLo6KsQ5VYvw0p6YJcsL33+jcOWsFe6D4dhYlQkw5QHXn5c0Eenvz1SQqE96pcXJ57gmnzO9iVjY9RqPoLWXSRub0pG3Q6x8naOq16uaJZyk8kVjYOayx5umR73fI9iyMG0YOF8H5vy6/
→˓gYAnYssX26kObXan0fD9rgv4aWK0Xzp5hwz1ECAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQUiLowa8Me7+d0x2PvV+pf3HoZ3iUwHwYDVR0jBBgwFoAUiLowa8Me7+d0x2PvV+pf3HoZ3iUwDQYJKoZIhvcNAQELBQADggEBAMtieNiamax1gUeSeGuA72NucPCZIdx2JrTIDhCAjLmPpvnXu1djGSa07YpgLiosnbtMMfsQO2O/
→˓Yz1VkQUTjLn2x7DKwuL9A8+IrYELSth4aCNSgPkhZfDL238MflAxptNRAoIeRGn8l3oSg4AUzBuScErwvBbHWShO66nV0wzVFb+mLvNas3Wd/
→˓GMiZHI/MwGZpj86Q/8wvyyw2C0b0ddWaoXwDyJjuxja0nHPDHVriJ8/
→˓xsOfBk144n1zyP++apQXmXorCy4hs9GPyr+HGeoL6kNydDxdwzJLCqWW7u3wSnxjCJk+hfGq82qNm90ALv5PaOb58fDgWwBwuvTP0AA=
→˓",

(continues on next page)

8.18. krillc repo configure 59

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"service_uri": "https://localhost:3000/rfc8181/localname/",
"repo_info": {
"sia_base": "rsync://localhost/repo/localname/",
"rrdp_notification_uri": "https://localhost:3000/rrdp/notification.xml"

}
}

}

Important: In Krill 0.9.0 you cannot update the configuration of the repository used by your CA after it has been set.

Normally there should be no need to update this configuration after it has been set up initially. However, there may be
a use case to do this if for example you chose to run your own Publication Server, but you can now use a Publication
Server provided by a third party such as your RIR or NIR.

We have an open issue to address this and we plan to support migrating repositories as soon as possible.

8.19 krillc repo status

This subcommand can be used to verify the status between a CA and its repository. Note that Krill will keep trying to
re-sync CAs with their repositories in case of any issues and the response includes an indication of the next planned
moment for this. In other words, there should not be a need to trigger this synchronisation manually, but for the
impatient, you can use krillc bulk sync.

Example CLI:

$ krillc repo status --ca newca
URI: https://localhost:3000/rfc8181/localname/
Status: success
Last contacted: 2021-04-08T09:53:27+00:00
Next contact on or before: 2021-04-09T01:53:27+00:00

So the CLI text output does NOT include the files which are published. If you want to see these files then you can look
at the JSON response instead:

{
"last_exchange": {
"timestamp": 1617875607,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"next_exchange_before": 1617933207,
"published": [
{
"base64":

→˓"MIIJTQYJKoZIhvcNAQcCoIIJPjCCCToCAQMxDTALBglghkgBZQMEAgEwgZsGCyqGSIb3DQEJEAEaoIGLBIGIMIGFAgEBGA8yMDIxMDQwODA5NDgyNVoYDzIwMjEwNDA5MDk1MzI1WgYJYIZIAWUDBAIBMFMwURYsMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5jcmwDIQDYb3KmzVBt0Ee3CkVLOpcale0dr9EHoL/
→˓NWi2U6R7ffaCCBtgwggbUMIIFvKADAgECAhQfMMPbsoNAMCZM8zHTPf4QMZ06vjANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEygxNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JEMB4XDTIxMDQwODA5NDgyNVoXDTIxMDQxNTA5NTMyNVowggItMYICKTCCAiUGA1UEAxOCAhwzMDgyMDEwQTAyODIwMTAxMDBBQzhDQzlEMkUzM0ZCQ0U4MzdDMDIwRUFFQzYyNjA4OEY3NkNFQTM3MTA3MzNBMDhFNTYyQTg5M0UyMDBDRTA2QkIzMUQ0QkU3QTJGNzQ5QTM0Rjg1RTYyODdCNjE1MzQzODA2NDJBOTUzNzQyQUY2RDM0RTIxRDY0MkJFOUMwQjg1OURDQjcxMDJGRDJGNDM1MjE1ODI0RDU5NjVFNDlBNDBGRDBFOTZCQTFDRjRDQkM3QzM3RkFCRTBBNzlCNkEzRkM4OTE2MzA1RjY1MjYwREE0NERCMUEzOEZBN0MzM0UwNzRGQTRBMTVFODc5MkJEQzQwMDZCQUM2Mzc4RkU3M0Y1MEMxQjRBMTdFQ0EwNjU4NkQwRjRERUFFREQzQzJGOTlDQ0E2NzM3ODU4MUZFRUM5RjRGNjk3QTcwN0I5QUY4Q0RGQTFDREE1RERCNzA3MUU3QjY5QTNCMDQ2MUJBMDMyOTg3OEVFOTkwMDBFNDhBQUU0NzIwMjY0OEI3RjZCNUZENDc4NUFBREIzMUUwM0U0QjMxNzEzQTNGODVFNzQ4RjFCQUY0QURBNjQyMUFFODE4QjIwOEFFQkVCMUQwQjAxNzk0NEQyRTM0MDkxODExQzFFNzk5RDI3MDVBQ0IwNkQxMUEwQzQ0NjdGODlCMjU4RjBFNEY2OTRBQjkwQjAyMDMwMTAwMDEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCsjMnS4z+86DfAIOrsYmCI92zqNxBzOgjlYqiT4gDOBrsx1L56L3SaNPheYoe2FTQ4BkKpU3Qq9tNOIdZCvpwLhZ3LcQL9L0NSFYJNWWXkmkD9Dpa6HPTLx8N/
→˓q+Cnm2o/yJFjBfZSYNpE2xo4+nwz4HT6ShXoeSvcQAa6xjeP5z9QwbShfsoGWG0PTert08L5nMpnN4WB/
→˓uyfT2l6cHua+M36HNpd23Bx57aaOwRhugMph47pkADkiq5HICZIt/a1/
→˓UeFqtsx4D5LMXE6P4XnSPG69K2mQhroGLIIrr6x0LAXlE0uNAkYEcHnmdJwWssG0RoMRGf4myWPDk9pSrkLAgMBAAGjggHiMIIB3jAdBgNVHQ4EFgQU0iBYgw/
→˓6TJwtHRc735eady5RAOIwHwYDVR0jBBgwFoAUFrMckusRa8YAJsUJRK1EIF3ZrL0wDgYDVR0PAQH/
→˓BAQDAgeAMGAGA1UdHwRZMFcwVaBToFGGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5jcmwwaQYIKwYBBQUHAQEEXTBbMFkGCCsGAQUFBzAChk1yc3luYzovL2xvY2FsaG9zdC9yZXBvL3Rlc3RiZWQvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELmNlcjBrBggrBgEFBQcBCwRfMF0wWwYIKwYBBQUHMAuGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5tZnQwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAhBggrBgEFBQcBBwEB/
→˓wQSMBAwBgQCAAEFADAGBAIAAgUAMBUGCCsGAQUFBwEIAQH/
→˓BAYwBKACBQAwDQYJKoZIhvcNAQELBQADggEBAJQiHZ91d7/
→˓a52qM0DyXp7jbkygm2MkT5tc6pp6sxHv6pDfXxAzJS8OtgcFCTDKC57pKvVvw8THE079nbMSxfaA5nP8egedxeuTzrj8iOh9nHk/
→˓X4pWhIWsAvNgiTebYj+Eax97MmRWAkDgxWpDQ+CWQBl2gBstLmBKCBTw6cFlkGrBCLVe+gSDTnHpy4ltza6pD+EawTNrGLBnFn+/
→˓+dgzx/GA2qbRXiBLm2/R4HR7zI/QYy+wWDoaZraCu6dUZEF4WomS99aihEyNp8tzyuEntmmMfw0z/
→˓xYt1I7VN1pzc5umEPksSRvILmA3eJO3Khw2xWZzYjYcVyZAo0QbujdExggGqMIIBpgIBA4AU0iBYgw/
→˓6TJwtHRc735eady5RAOIwCwYJYIZIAWUDBAIBoGswGgYJKoZIhvcNAQkDMQ0GCyqGSIb3DQEJEAEaMBwGCSqGSIb3DQEJBTEPFw0yMTA0MDgwOTUzMjVaMC8GCSqGSIb3DQEJBDEiBCDjDAYghzZK/
→˓MgJG2G+mOfNzHsAV6ysGcb89bMa7KTEmTANBgkqhkiG9w0BAQEFAASCAQCHxZ3CeXicDOpmXZ/
→˓uhEGtvsuzpepVryk58zBLnSpbKfjnJWwiL0t3PsvlQuKAXgW0Xc5cC4Bbvb8Aysr4W1c0SKjnWz4dPLqgNCzvIVJRToc2xHFd6lbJGuqii6tNRvYKzPtuUMrToyHTgh6+SdWI98RsBVtQsSt68f6620ow9r4aGjdXokkayCyOBZ/
→˓DF2j3h8eZpEM1Y09kOTQfwkn297UYOv9Hi74iKIzhS3+8FmfSP0UTA207+U7HBQp9SNkK2HjFa3milgV+hJHOPutNsbgvwd5YPAFMbuve+J5k4/
→˓qvfTN0hZlGafx5ODIppv+tqJ76zts9wzgVXrpl6tKQ",

(continues on next page)

60 Chapter 8. Using the CLI or API

https://github.com/NLnetLabs/krill/issues/480

Krill User Manual

(continued from previous page)

"uri": "rsync://localhost/repo/localname/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.mft"

},
{
"base64":

→˓"MIIBrzCBmAIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEygxNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JEFw0yMTA0MDgwOTQ4MjVaFw0yMTA0MDkwOTUzMjVaMACgLzAtMB8GA1UdIwQYMBaAFBazHJLrEWvGACbFCUStRCBd2ay9MAoGA1UdFAQDAgEBMA0GCSqGSIb3DQEBCwUAA4IBAQDJ3GxaYCxDCyfyfqdsUtM/
→˓OQx341/
→˓wWYrBrEAQ56NE6AVN+r0qjmO2mhNgVNQ1VdCLjo67ilQufmxGhtUQxBS625f1hr69cYw1l15wHDP4SFpXO96ysTxBhxpLGL215nT0S6FkQ+PLJ2IFLMhwn7Sns7RpQ9HDugNtz7QMRLbxeAz8ckeJHItUfyTpBhsweZEocTej1I7K4FugjZ+qSLDUFiy3QIcHO7lkepPraWLz9RVMuaJjcA7gAz3lNrtdRkygWRwGEC0eDwBa7MJ44feymQjsol6cr7m09MjSqTJyrNECjuNvLfilYuUMdW965Ih1HJQySE+FaetLQLbsTJxr
→˓",

"uri": "rsync://localhost/repo/localname/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.crl"

}
]

}

Example API:

$ krillc repo status --ca newca --api
GET:
https://localhost:3000/api/v1/cas/newca/repo/status

Headers:
Authorization: Bearer secret

8.20 krillc repo show

Show the repository configuration for your CA.

Example CLI:

$ krillc repo show --ca newca
Repository Details:
service uri: https://localhost:3000/rfc8181/localname/
base_uri: rsync://localhost/repo/localname/
rpki_notify: https://localhost:3000/rrdp/notification.xml

Example API:

$ krillc repo show --ca newca --api
GET:
https://localhost:3000/api/v1/cas/newca/repo

Headers:
Authorization: Bearer secret

8.20. krillc repo show 61

Krill User Manual

8.21 krillc show

Shows lots of details of a CA. Note, we may still extend the JSON response in future but we will aim to add new
information only.

Example CLI:

$ krillc show --ca newca
Name: newca

Base uri: rsync://localhost/repo/localname/
RRDP uri: https://localhost:3000/rrdp/notification.xml

ID cert PEM:
-----BEGIN CERTIFICATE-----
MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE
NzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0
MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2
QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8
ugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu
L+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O
lB/dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo
BjnP7wDFiaZ2lwvL2beVYu6/hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3
Pi+pIDBIQ3wTcpQIOqAq/SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw
AwEB/zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU
7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO
NdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh
3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i
KantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ
7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6
t/d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV
bXTPM8YLRgc=
-----END CERTIFICATE-----

Hash: 992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99

Total resources:
ASNs: AS65000
IPv4: 10.0.0.0/8
IPv6: 2001:db8::/32

Parents:
Handle: my_parent Kind: RFC 6492 Parent

Resource Class: 0
Parent: my_parent
State: active Resources:

ASNs: AS65000
IPv4: 10.0.0.0/8
IPv6: 2001:db8::/32

Children:
(continues on next page)

62 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

<none>

Example JSON response of the API:

{
"handle": "newca",
"id_cert": {
"pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE\
→˓nNzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0\
→˓nMzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2\
→˓nQTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP\
→˓nADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8\
→˓nugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu\
→˓nL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O\nlB/dGlJvkAY8b/
→˓XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo\nBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3\nPi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw\nAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU\
→˓n7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO\
→˓nNdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh\
→˓n3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i\
→˓nKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ\
→˓n7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6\nt/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV\nbXTPM8YLRgc=\n-----END␣
→˓CERTIFICATE-----\n",
"hash": "992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99"

},
"repo_info": {
"sia_base": "rsync://localhost/repo/localname/",
"rrdp_notification_uri": "https://localhost:3000/rrdp/notification.xml"

},
"parents": [
{
"handle": "my_parent",
"kind": "rfc6492"

}
],
"resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"resource_classes": {
"0": {
"name_space": "0",
"parent_handle": "my_parent",
"keys": {
"active": {
"active_key": {
"key_id": "16B31C92EB116BC60026C50944AD44205DD9ACBD",
"incoming_cert": {

(continues on next page)

8.21. krillc show 63

Krill User Manual

(continued from previous page)

"cert":
→˓"MIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp
→˓",

"uri": "rsync://localhost/repo/testbed/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",

"resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

}
},
"request": null

}
}

}
}

},
"children": [],
"suspended_children": []

}

Example API call:

$ krillc show --ca newca --api
GET:
https://localhost:3000/api/v1/cas/newca

Headers:
Authorization: Bearer secret

8.22 krillc issues

Show issues for CAs. The response will be empty unless there are actual current issues.

Example CLI:

$ krillc issues --ca newca
no issues found

Example JSON response with issues:

64 Chapter 8. Using the CLI or API

Krill User Manual

{
"repo_issue": {
"label": "sys-http-client",
"msg": "HTTP client error: Access Forbidden",
"args": {
"cause": "Access Forbidden"

}
},
"parent_issues": [
{
"parent": "parent",
"issue": {
"label": "rfc6492-invalid-signature",
"msg": "Invalidly signed RFC 6492 CMS",
"args": {}

}
}

]
}

Example API call:

$ krillc issues --ca newca --api
GET:
https://localhost:3000/api/v1/cas/newca/issues

Headers:
Authorization: Bearer secret

8.23 krillc history

Show the history of a CA. Using this command you can show the history of all the things that happened to your CA.

There are two subcommands for this:

USAGE:
krillc history [SUBCOMMAND]

SUBCOMMANDS:
commands Show the commands sent to a CA
details Show details for a command in the history of a CA

8.23. krillc history 65

Krill User Manual

8.24 krillc history commands

With this subcommand you can look at an overview of all commands that were sent to a CA.

Example CLI:

$ krillc history commands --ca newca
time::command::key::success
2021-04-07T15:25:01Z::Add parent 'my_parent' as 'RFC 6492 Parent' ::command--1617809101--
→˓1--cmd-ca-parent-add::OK
2021-04-08T09:53:23Z::Update repo to server at: https://localhost:3000/rfc8181/localname/
→˓ ::command--1617875603--2--cmd-ca-repo-update::OK
2021-04-08T09:53:24Z::Update entitlements under parent 'my_parent': 0 => asn: AS65000,␣
→˓v4: 10.0.0.0/8, v6: 2001:db8::/32 ::command--1617875604--3--cmd-ca-parent-
→˓entitlements::OK
2021-04-08T09:53:25Z::Update received cert in RC '0', with resources 'asn: 1 blocks, v4:␣
→˓1 blocks, v6: 1 blocks' ::command--1617875605--4--cmd-ca-rcn-receive::OK

The JSON response includes some data which we do not (yet) show in the text output - e.g. the name of the user who
sent a command. This will become more relevant in future as people start using the multi-user feature of the Krill UI:

{
"offset": 0,
"total": 4,
"commands": [

{
"key": "command--1617809101--1--cmd-ca-parent-add",
"actor": "master-token",
"timestamp": 1617809101616,
"handle": "newca",
"version": 1,
"sequence": 1,
"summary": {
"msg": "Add parent 'my_parent' as 'RFC 6492 Parent'",
"label": "cmd-ca-parent-add",
"args": {
"parent": "my_parent",
"parent_contact": "RFC 6492 Parent"

}
},
"effect": {
"result": "success",
"events": [
1

]
}

},
{
"key": "command--1617875603--2--cmd-ca-repo-update",
"actor": "master-token",
"timestamp": 1617875603613,
"handle": "newca",
"version": 2,

(continues on next page)

66 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

"sequence": 2,
"summary": {
"msg": "Update repo to server at: https://localhost:3000/rfc8181/localname/",
"label": "cmd-ca-repo-update",
"args": {
"service_uri": "https://localhost:3000/rfc8181/localname/"

}
},
"effect": {
"result": "success",
"events": [
2

]
}

},
{
"key": "command--1617875604--3--cmd-ca-parent-entitlements",
"actor": "krill",
"timestamp": 1617875604550,
"handle": "newca",
"version": 3,
"sequence": 3,
"summary": {
"msg": "Update entitlements under parent 'my_parent': 0 => asn: AS65000, v4: 10.

→˓0.0.0/8, v6: 2001:db8::/32 ",
"label": "cmd-ca-parent-entitlements",
"args": {
"parent": "my_parent"

}
},
"effect": {
"result": "success",
"events": [
3,
4

]
}

},
{
"key": "command--1617875605--4--cmd-ca-rcn-receive",
"actor": "krill",
"timestamp": 1617875605662,
"handle": "newca",
"version": 5,
"sequence": 4,
"summary": {
"msg": "Update received cert in RC '0', with resources 'asn: 1 blocks, v4: 1␣

→˓blocks, v6: 1 blocks'",
"label": "cmd-ca-rcn-receive",
"args": {
"asn_blocks": "1",
"class_name": "0",

(continues on next page)

8.24. krillc history commands 67

Krill User Manual

(continued from previous page)

"ipv4_blocks": "1",
"ipv6_blocks": "1",
"resources": "asn: AS65000, v4: 10.0.0.0/8, v6: 2001:db8::/32"

}
},
"effect": {
"result": "success",
"events": [
5

]
}

}
]

}

The CLI and API support pagination:

--after <<RFC 3339 DateTime>> Show commands issued after date/time in RFC 3339␣
→˓format, e.g. 2020-04-

09T19:37:02Z
--before <<RFC 3339 DateTime>> Show commands issued after date/time in RFC 3339␣
→˓format, e.g. 2020-04-

09T19:37:02Z
--offset <<number>> Number of results to skip
--rows <<number>> Number of rows (max 250)

And these values are converted to path parameters in the API call:

$ krillc history commands --ca newca --after 2020-12-01T00:00:00Z --before 2021-04-
→˓09T00:00:00Z --rows 2 --offset 1 --api
GET:
https://localhost:3000/api/v1/cas/newca/history/commands/2/1/1606780800/1617926400

Headers:
Authorization: Bearer secret

8.25 krillc history details

Show details for a specific historic CA command. This subcommand expects the command key as reported by krillc
history commands.

The text output of the CLI will show a summary of the command details, and the state changes in the CA (called events)
that followed:

$ krillc history details --ca newca --key command--1617875604--3--cmd-ca-parent-
→˓entitlements
Time: 2021-04-08T09:53:24Z
Action: Update entitlements under parent 'my_parent': 0 => asn: AS65000, v4: 10.0.0.0/8,␣
→˓v6: 2001:db8::/32
Changes:
added resource class with name '0'
requested certificate for key (hash) '16B31C92EB116BC60026C50944AD44205DD9ACBD' under␣

→˓resource class '0' (continues on next page)

68 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

If you want to see the full details, then have a look at the JSON response instead:

{
"command": {
"actor": "krill",
"time": "2021-04-08T09:53:24.550017Z",
"handle": "newca",
"version": 3,
"sequence": 3,
"details": {
"type": "update_resource_entitlements",
"parent": "my_parent",
"entitlements": [
{
"resource_class_name": "0",
"resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

}
}

]
},
"effect": {
"result": "success",
"events": [
3,
4

]
}

},
"result": {
"Events": [
{
"id": "newca",
"version": 3,
"details": {
"type": "resource_class_added",
"resource_class_name": "0",
"parent": "my_parent",
"parent_resource_class_name": "0",
"pending_key": "16B31C92EB116BC60026C50944AD44205DD9ACBD"

}
},
{
"id": "newca",
"version": 4,
"details": {
"type": "certificate_requested",
"resource_class_name": "0",
"req": {

(continues on next page)

8.25. krillc history details 69

Krill User Manual

(continued from previous page)

"class_name": "0",
"limit": {
"asn": "none",
"ipv4": "none",
"ipv6": "none"

},
"csr":

→˓"MIIDjzCCAncCAQAwMzExMC8GA1UEAxMoMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAOwGi4ZYQ+FaD5exEMZnK4UsM+IgTHLunhvduM08F8d5KocJ47CJUhVLbGIgAY7Y0Fy/
→˓6EvY4Uo0ICel3vWE5cwE1db/s4c3xNTpysi7X/DWCR/pQJcWu/
→˓6mhb0QkecuicxrhkUtIWy9AAIgZSnEi6JCNpJgWW1Ntv6jZz0pagqxfSRmq3nM6uAA/
→˓xyR7xIUYd2qp6c8idcpODKyz2QKz2kW0yToEhroqNG+oVVkh/
→˓rEbnfK0ncmqwaO8SjyqgdjGS+Qy1uOGOWZbT3uLoN4LXbjVfdIbrgNIyTUI2/
→˓XG3kxJe5svNY4P7aUsh3+eCqXg5XRsuRtvrcn/
→˓bpzwVk5OFkCAwEAAaCCARUwggERBgkqhkiG9w0BCQ4xggECMIH/MA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/
→˓BAQDAgEGMIHbBggrBgEFBQcBCwEBAASByzCByDAvBggrBgEFBQcwBYYjcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8wWwYIKwYBBQUHMAqGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5tZnQwOAYIKwYBBQUHMA2GLGh0dHBzOi8vbG9jYWxob3N0OjMwMDAvcnJkcC9ub3RpZmljYXRpb24ueG1sMA0GCSqGSIb3DQEBCwUAA4IBAQBFxEkEqMOnNWuIZalQkX/
→˓hxjAia3vtLrYtET1InOF/5UtRClDX5EWl34JRCXEIkDgWWbCVmxQyTw0VfqKImT/JqzC/
→˓NXrWMJBVJ27JgkHH5TITHGgfIjDRS19+JOFdiCBlQWgU3V5zfMGlB0263xRteX7A1kLedLuvt51DgNMwyWFgp/
→˓PkJKUCTEYi27j6DOF5J8jZ7JD5lMBs7gOGAiUJSzCBY7XfjEeVmePRLJ8hB0Wa/
→˓n3h+ni6UTOF6itKPmHqddxpiEb8ij987gCTjuZQisi9j+JKoPqzXon2vOx+GJjo4Sb++HD0buatiEmj5SvUmV8gl0F/
→˓msh4F4a5YG8r"

},
"ki": "16B31C92EB116BC60026C50944AD44205DD9ACBD"

}
}

]
}

}

Example API call:

$ krillc history details --ca newca --key command--1617875604--3--cmd-ca-parent-
→˓entitlements --api
GET:
https://localhost:3000/api/v1/cas/newca/history/details/command--1617875604--3--cmd-ca-

→˓parent-entitlements
Headers:
Authorization: Bearer secret

8.26 krillc roas

Manage ROAs for your CA.

Krill lets users create Route Origin Authorisations (ROAs), the signed objects that state which Autonomous System
(AS) is authorised to originate one of your prefixes, along with the maximum prefix length it may have.

Important: Krill CAs let operators configure which authorizations they want to have on ROA objects. But it’s Krill
that will figure out which objects to create for this. I.e. users just configure their intent to authorise an ASN to originate a
prefix, but they do not need to worry about things like the actual ROA encoding, before and after times, object renewals,
publishing, and under which parent the ROA is to be created - if there are multiple. However, we will refer to these

70 Chapter 8. Using the CLI or API

Krill User Manual

authorizations as ROAs, because for all intent and purposes this difference is an implementation detail that Krill, by
design, abstracts away from the operator.

USAGE:
krillc roas [SUBCOMMAND]

SUBCOMMANDS:
list Show current authorizations
update Update authorizations
bgp Show current authorizations in relation to known announcements

8.27 krillc roas list

Show current authorizations.

USAGE:
krillc roas list [FLAGS] [OPTIONS]

OPTIONS:
-c, --ca <name> The name of the CA you wish to control. Or set env: KRILL_

→˓CLI_MY_CA

Example:

You can list ROAs in the following way:

$ krillc roas list
192.0.2.0/24 => 64496
2001:db8::/32-48 => 64496

8.28 krillc roas update

Update ROAs.

The CLI supports adding or removing individual ROAs as well as submitting a file with a delta of additions and removals
as an atomic delta. In terms of the API these options will call the same API end-point and always submit a JSON body
with a delta.

• Add a single ROA

Example CLI usage to add a ROA:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496"

This will submit the following JSON to the API:

$ krillc roas update --add "192.168.0.0/16 => 64496" --api
POST:
https://localhost:3000/api/v1/cas/ca/routes

Headers:
content-type: application/json
Authorization: Bearer secret

(continues on next page)

8.27. krillc roas list 71

Krill User Manual

(continued from previous page)

Body:
{
"added": [
{
"asn": 64496,
"prefix": "192.168.0.0/16"

}
],
"removed": []

}

• Remove a single ROA

Example CLI usage to remove a ROA:

$ krillc roas update --ca newca --remove "192.168.0.0/16 => 64496"

This will submit the following JSON to the API:

$ krillc roas update --ca newca --remove "192.168.0.0/16 => 64496" --api
POST:
https://localhost:3000/api/v1/cas/newca/routes

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"added": [],
"removed": [
{
"asn": 64496,
"prefix": "192.168.0.0/16"

}
]

}

• Update multiple ROAs

You can also update multiple ROAs as a single delta. The CLI can do deltas if you provide it with a file using the
following format:

Some comment
Indented comment

A: 10.0.0.0/24 => 64496
A: 10.1.0.0/16-20 => 64496 # Add prefix with max length
R: 10.0.3.0/24 => 64496 # Remove existing authorization

And then call the CLI with the --delta option. The CLI will parse the delta file and submit a JSON body containing
multiple changes:

krillc roas update --delta ./data/roa-delta.txt --ca newca --api
POST:
https://localhost:3000/api/v1/cas/newca/routes

(continues on next page)

72 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

Headers:
content-type: application/json
Authorization: Bearer secret
Body:
{
"added": [
{
"asn": 64496,
"prefix": "10.0.0.0/24"

},
{
"asn": 64496,
"prefix": "10.1.0.0/16",
"max_length": 20

}
],
"removed": [
{
"asn": 64496,
"prefix": "10.0.3.0/24"

}
]
}

• Errors

You will get an error response if ROA updates cannot be applied. For example adding a duplicate ROA will result in
the following error:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496"
Delta rejected:

Cannot add the following duplicate ROAs:
192.168.0.0/16-16 => 64496

The returned JSON for an error with with the label “ca-roa-delta-error” has a format similar to the normal error response,
but with the addition of a delta_error entry with details. There you can expect 4 categories of errors:

duplicates You are trying to add a ROA that already exists
notheld You are trying to add a ROA for a prefix you don’t hold
unknowns You are trying to remove a ROA that does not exist
invalid_length You specified an invalid length/max_length for a prefix

Example:

{
"label": "ca-roa-delta-error",
"msg": "Delta rejected, see included json",
"args": {},
"delta_error": {
"duplicates": [
{

(continues on next page)

8.28. krillc roas update 73

Krill User Manual

(continued from previous page)

"asn": 1,
"prefix": "10.0.0.0/20",
"max_length": 24

}
],
"notheld": [
{
"asn": 1,
"prefix": "10.128.0.0/9"

}
],
"unknowns": [
{
"asn": 1,
"prefix": "192.168.0.0/16"

}
],
"invalid_length": [
{
"asn": 1,
"prefix": "10.0.1.0/25"

}
]

}
}

• Try

With RPKI ROAs you can create RPKI invalids in BGP if for example your prefix is multi homed and you authorise one
ASN, but not another. Another cause of invalids might be that you authorise a covering prefix, but not more specific
announcements that you do.

To help with this Krill also comes with a “try”, or “feeling lucky” feature. Meaning that when --try is specified with
an update, Krill will check the effect of the update against what it knows about BGP announcements. If the effect has
no negative side-effects then it will just be applied, but if it would result in any invalid announcements then an error
report will be returned instead:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496" --try
Unsafe update, please review

Effect would leave the following invalids:

Announcements from invalid ASNs:
192.168.0.0/24 => 64497

192.168.1.0/24 => 64497

Announcements too specific for their ASNs:

192.168.0.0/24 => 64496

You may want to consider this alternative:
(continues on next page)

74 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

Authorize these announcements which are currently not covered:
192.168.0.0/24 => 64496
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

Example JSON response:

{
"effect": [
{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16,
"state": "roa_disallowing",
"disallows": [

{
"asn": 64496,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.1.0/24"

}
]

},
{
"asn": 64496,
"prefix": "192.168.0.0/24",
"state": "announcement_invalid_length",
"disallowed_by": [
{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

},
{
"asn": 64497,
"prefix": "192.168.0.0/24",
"state": "announcement_invalid_asn",
"disallowed_by": [
{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

(continues on next page)

8.28. krillc roas update 75

Krill User Manual

(continued from previous page)

},
{
"asn": 64497,
"prefix": "192.168.1.0/24",
"state": "announcement_invalid_asn",
"disallowed_by": [
{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

}
],
"suggestion": {
"not_found": [
{
"asn": 64496,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.1.0/24"

}
]

}
}

The API call for this is the same as when posting a normal ROA delta, except that /try is appended to the path, e.g.:
POST https://localhost:3000/api/v1/cas/newca/routes/try

Important: Krill does this analysis based on RIPE RIS BGP information. This information may be outdated, or
incomplete. More importantly it may also include erroneous or even malicious announcements that are seen in the
global BGP. So ALWAYS review the report and suggestions returned by Krill! Note, we plan to support other ways of
getting BGP information into Krill in future - e.g. by parsing a local BGP feed or table.

• Dryrun

The dryrun option is similar to try, except that, well, it doesn’t even try to apply a change. It just reports the effects
of a change including positive effects.. so, actually, it is different:

$ krillc roas update --ca newca --add "10.0.0.0/24 => 64496" --dryrun
Authorizations covering announcements seen:

Definition: 10.0.0.0/24-24 => 64496

Authorizes:
10.0.0.0/24 => 64496

(continues on next page)

76 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

Announcements which are valid:

Announcement: 10.0.0.0/24 => 64496

8.29 krillc roas bgp

Important: Krill does BGP analysis based on RIPE RIS BGP information. This information may be outdated, or
incomplete. More importantly it may also include erroneous or even malicious announcements that are seen in the
global BGP. So ALWAYS review the reports and suggestions returned by Krill! Note, we plan to support other ways
of getting BGP information into Krill in future - e.g. by parsing a local BGP feed or table.

The ROA vs BGP analysis is used in the try and dryrun options when applying a ROA delta, but this can also be
accessed proactively. For this the CLI has the following subcommands:

krillc roas bgp analyze Show full report of ROAs vs known BGP announcements
krillc roas bgp suggest Show ROA suggestions based on known BGP announcements

Example of the analyze function:

$ krillc roas bgp analyze --ca newca
Authorizations covering announcements seen:

Definition: 192.168.0.0/24-24 => 64496

Authorizes:
192.168.0.0/24 => 64496

Disallows:
192.168.0.0/24 => 64497

Authorizations disallowing announcements seen. You may want to use AS0 ROAs instead:

Definition: 192.168.0.0/16-16 => 64496

Disallows:
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

Announcements which are valid:

Announcement: 192.168.0.0/24 => 64496

Announcements from an unauthorized ASN:

Announcement: 192.168.0.0/24 => 64497

Disallowed by authorization(s):
(continues on next page)

8.29. krillc roas bgp 77

Krill User Manual

(continued from previous page)

192.168.0.0/16-16 => 64496
192.168.0.0/24-24 => 64496

Announcement: 192.168.1.0/24 => 64497

Disallowed by authorization(s):
192.168.0.0/16-16 => 64496

Announcements which are 'not found' (not covered by any of your authorizations):

Announcement: 10.0.0.0/21 => 64497
Announcement: 10.0.0.0/22 => 64496
Announcement: 10.0.0.0/22 => 64497
Announcement: 10.0.0.0/24 => 64496
Announcement: 10.0.2.0/23 => 64496

Example output of the “suggest” option:

$ krillc roas bgp suggest --ca newca
Remove the following ROAs which only disallow announcements (did you use the wrong ASN?),
→˓ if this is intended you may want to use AS0 instead:
192.168.0.0/16-16 => 64496

Keep the following authorizations:
192.168.0.0/24-24 => 64496

Authorize these announcements which are currently not covered:
10.0.0.0/21 => 64497
10.0.0.0/22 => 64496
10.0.0.0/22 => 64497
10.0.0.0/24 => 64496
10.0.2.0/23 => 64496

Authorize these announcements which are currently invalid because they are not allowed␣
→˓for these ASNs:
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

8.30 krillc bgpsec

Manage BGPSec Router Certificates for your CA.

Krill lets users create RFC 8209 BGPSec Router Certificates. These certificates are used in BGPSec to authorise a
router key for an ASN in the RPKI.

At the moment BGPSec deployment is virtually non-existent, so you are unlikely to need this. However, this func-
tionality is provided in the hope that it will help the community gain operational experience that may help BGPSec
deployment.

Currently BGPSec Router Certificates can only be managed through the API. If there is popular demand we will add
this to the UI in future.

78 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc8209.html

Krill User Manual

USAGE:
krillc bgpsec [SUBCOMMAND]

SUBCOMMANDS:
list Show current BGPSec configurations
add Add BGPSec configurations
remove Remove a BGPSec definition

8.31 krillc bgpsec list

Show the current BGPSec configurations.

Example CLI:

$ krillc bgpsec list
ASN, key identifier, CSR base64
AS211321, 17316903F0671229E8808BA8E8AB0105FA915A07, MIH.....

Example JSON response:

8.32 krillc bgpsec add

Add a new BGPSec configurations. I.e. choose an ASN you hold and a Certificate Sign Request (CSR) you got from
your router so that Krill can create a BGPSec Router Certificate for it.

Example CLI:

$ krillc bgpsec add --asn AS65000 --csr ./router-csr.der

This will submit the following JSON to the API:

$ krillc bgpsec add --asn AS65000 --csr ./router-csr.der --api
POST:
https://localhost:3000/api/v1/cas/local-testbed-child/bgpsec

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"add": [
{
"asn": 65000,
"csr":

→˓"MIH7MIGiAgEAMBoxGDAWBgNVBAMMD1JPVVRFUi0wMDAwM0NDQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE9dBTAcT+j96+mhvyAqX7JLae1+spSSGPCsnus5EITTrdMvnEc2J4B/
→˓DBs2N3Fzb2euM+AqWdtoH+LXsmxqvKOgJjAkBgkqhkiG9w0BCQ4xFzAVMBMGA1UdJQQMMAoGCCsGAQUFBwMeMAoGCCqGSM49BAMCA0gAMEUCIQCKJSWZeF7XHuHkFeAN7zOzhEgM+6WyaklaIo3J3lRPmgIgD9kPSO0AjVf1cEUnQrgC5D/
→˓5SMaUJ2hp3r8joKFq3hA="

}
],
"remove": []

}

8.31. krillc bgpsec list 79

Krill User Manual

8.33 krillc bgpsec remove

Note that Krill may actually create multiple BGPSec Router Certificates based on the CSR if you hold the ASN multiple
times. E.g. under mutliple parents. In practice this is unlikely to happen, but this is conceptually important when it
comes to removal. You can remove any and all BGPSec Router Certificate by asking Krill to remove the configuration
for a given ASN and router key identifier (as shown in the list command).

Example CLI:

$ krillc bgpsec remove --asn AS65000 --key 17316903F0671229E8808BA8E8AB0105FA915A07

This submits the following JSON to the API:

$ krillc bgpsec remove --asn AS65000 --key 17316903F0671229E8808BA8E8AB0105FA915A07 --api
POST:
https://localhost:3000/api/v1/cas/local-testbed-child/bgpsec

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"add": [],
"remove": [
"ROUTER-00033979-17316903F0671229E8808BA8E8AB0105FA915A07"

]
}

Careful observers may have noticed that the API supports mutliple additions and removals in a single update. However,
such bulk changes are not yet supported in the CLI.

8.34 krillc bulk

Manually trigger refresh/republish/resync for all CAs.

Normally there is no need to use these functions. Krill has background processes that these functions run whenever
they are needed. However, they may be useful in cases where the connection between your CA(s) and their remote
parents or repository may be broken for example, and you want to debug the issue.

There are three “bulk” subcommands available:

USAGE:
krillc bulk [SUBCOMMAND]

SUBCOMMANDS:
publish Force that all CAs create new objects if needed (in which case they will␣

→˓also sync)
refresh Force that all CAs ask their parents for updated certificates
sync Force that all CAs sync with their repo server

80 Chapter 8. Using the CLI or API

Krill User Manual

8.35 krillc bulk publish

Force that all CAs create new objects if needed (in which case they will also sync). Note that this function is executed
when Krill starts up and then again every 10 minutes.

Example CLI:

$ krillc bulk publish

Example API call:

$ krillc bulk publish --api
POST:
https://localhost:3000/api/v1/bulk/cas/publish

Headers:
Authorization: Bearer secret

Body:
<empty>

8.36 krillc bulk refresh

Force that all CAs ask their parents for updated certificates. Note that this function is executed when Krill starts up and
then again every 10 minutes.

Example CLI:

$ krillc bulk refresh

Example API call:

$ krillc bulk refresh --api
POST:
https://localhost:3000/api/v1/bulk/cas/sync/parent

Headers:
Authorization: Bearer secret

Body:
<empty>

8.37 krillc bulk sync

Force that all CAs sync with their publication server.

This function is executed when Krill starts up. When Krill is running then CAs will synchronise with their publication
server whenever there is new content to publish. And if such a synchronisation fails, then Krill will schedule another
attempt every 5 minutes until synchronisation succeeds.

However, if you believe that there is an issue with the publication server, or you wish to debug connection issues, then
you can trigger this function manually:

$ krillc bulk sync --api
POST:

(continues on next page)

8.35. krillc bulk publish 81

Krill User Manual

(continued from previous page)

https://localhost:3000/api/v1/bulk/cas/sync/repo
Headers:
Authorization: Bearer secret

Body:
<empty>

8.38 krillc children

Manage children for a CA in Krill.

Most operators will not need this, but just like you can operate your Krill CA under an RIR or NIR, you can delegate your
resources to so-called child CAs. This may be useful in case you need to authorise different units of your organisation
or customers to manage some of your prefixes.

USAGE:
krillc children [SUBCOMMAND]

SUBCOMMANDS:
add Add a child to a CA
info Show info for a child (id and resources)
update Update an existing child of a CA
response Show the RFC8183 Parent Response XML
connections Show connections stats for children of a CA
suspend Suspend a child CA: hide certificate(s) issued to child
unsuspend Suspend a child CA: republish certificate(s) issued to child
remove Remove an existing child from a CA

8.39 krillc children add

Add a child to a CA. To add a child, you will need to:

1. Choose a unique local name (handle) that the parent will use for the child

2. Choose initial resources (asn, ipv4, ipv6)

3. Present the child’s RFC 8183 request

The default response is the RFC 8183 parent response XML file. Or, if you set --format json you will get the plain
API response.

If you need the response again, you can use the krillc children response command.

When you use the CLI you can provide a path to the Child Request XML and the CLI will parse this, and convert it to
the JSON that Krill expects when adding a child. We chose to use a different format here because we needed to include
other information not contained in the XML. I.e. just submitting the plain XML would not work here.

Example CLI:

$ krillc children add --ca testbed --child newca --ipv4 "10.0.0.0/8" --ipv6 "2001:db8::/
→˓32" --asn "AS65000" --request ./data/new-ca-child-request.xml
<parent_response xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1" service_
→˓uri="https://localhost:3000/rfc6492/testbed" child_handle="newca" parent_handle=
→˓"testbed"> (continues on next page)

82 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

<parent_bpki_ta>
→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=</parent_bpki_ta>
</parent_response>

Example API call:

$ krillc children add --ca testbed --child newca --ipv4 "10.0.0.0/8" --ipv6 "2001:db8::/
→˓32" --asn "AS65000" --request ./data/new-ca-child-request.xml --api
POST:
https://localhost:3000/api/v1/cas/testbed/children

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"handle": "newca",
"resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc="
}

8.39. krillc children add 83

Krill User Manual

8.40 krillc children info

Show info for a child: state, id certificate info and resources. The “state” can either be “active”, or “suspended”.

Example CLI:

$ krillc children info --ca testbed --child newca
-----BEGIN CERTIFICATE-----
MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE
NzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0
MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2
QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8
ugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu
L+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O
lB/dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo
BjnP7wDFiaZ2lwvL2beVYu6/hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3
Pi+pIDBIQ3wTcpQIOqAq/SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw
AwEB/zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU
7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO
NdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh
3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i
KantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ
7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6
t/d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV
bXTPM8YLRgc=
-----END CERTIFICATE-----

SHA256 hash of PEM encoded certificate:␣
→˓992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99
resources: asn: , v4: 10.0.0.0/8, 192.168.0.0/16, v6:
state: active

Example JSON response:

{
"state": "active",
"id_cert": {
"pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE\
→˓nNzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0\
→˓nMzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2\
→˓nQTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP\
→˓nADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8\
→˓nugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu\
→˓nL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O\nlB/dGlJvkAY8b/
→˓XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo\nBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3\nPi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw\nAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU\
→˓n7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO\
→˓nNdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh\
→˓n3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i\
→˓nKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ\
→˓n7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6\nt/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV\nbXTPM8YLRgc=\n-----END␣
→˓CERTIFICATE-----\n",

(continues on next page)

84 Chapter 8. Using the CLI or API

Krill User Manual

(continued from previous page)

"hash": "992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99"
},
"entitled_resources": {
"asn": "",
"ipv4": "10.0.0.0/8, 192.168.0.0/16",
"ipv6": ""

}
}

Example API call:

$ krillc children info --ca testbed --child newca --api
GET:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
Authorization: Bearer secret

8.41 krillc children update

Update the resource entitlements of an existing child of a CA, or update the identity certificate that they will use when
sending RFC 6492 requests.

Important: When updating resources you need to specify the full new set of resource entitlements for the child. This
is not a delta. Also if you specify one resource type only like --ipv4, then --ipv6 and --asn will be assumed to be
intentionally empty:

$ krillc children update --ca testbed --child newca --ipv4 "10.0.0.0/8" --api
POST:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"id_cert": null,
"resources": {
"asn": "",
"ipv4": "10.0.0.0/8",
"ipv6": ""

}
}

When updating an ID certificate the CLI expects it to be DER encoded. It will submit it in base64 encoded form to the
API and leave the “resources” as null then. The null value means that this is not updated:

$ krillc children update --ca testbed --child newca --idcert ./data/new-ca.cer --api
POST:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
(continues on next page)

8.41. krillc children update 85

https://tools.ietf.org/html/rfc6492.html

Krill User Manual

(continued from previous page)

content-type: application/json
Authorization: Bearer secret

Body:
{
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=",
"resources": null

}

8.42 krillc children response

Get the RFC 8183 Parent Response for a child. The child will need this to add your CA as their parent.

Example CLI:

$ krillc children response --ca testbed --child newca
<parent_response xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1" service_
→˓uri="https://localhost:3000/rfc6492/testbed" child_handle="newca" parent_handle=
→˓"testbed">
<parent_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=</parent_bpki_ta>
</parent_response>

Example API call:

$ krillc children response --ca testbed --child newca --api
GET:
https://localhost:3000/api/v1/cas/testbed/children/newca/contact

Headers:
Authorization: Bearer secret

86 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

Note that the API always returns the RFC 8183 Parent Response in JSON format, but the CLI converts it. Other API
endpoints support getting such files in either JSON or RFC standard XML format. If there is desire to support this here
as well, then we will add this in a future release.

8.43 krillc children connections

Show the connections stats for children of a CA. This can be useful for monitoring for potentially deactivated child
CAs. Furthermore the user-agent for the last known connection from each child is shown. This can help to monitor for
children running potentially outdated RPKI CA implementations (old krill versions or other implementations).

Example CLI:

$ krillc children connections --ca testbed
handle,user_agent,last_exchange,result,state
CA2,krill/0.9.2-rc3,2021-09-24T10:00:00+00:00,success,active
ca,krill/0.9.2-rc3,2021-09-24T10:00:00+00:00,success,active
CA1,krill/0.9.2-rc1,2021-09-13T14:30:00+00:00,success,active
dummy_ca,n/a,never,n/a,active

Example API call:

$ krillc children connections --ca testbed --api
GET:
https://localhost:3000/api/v1/cas/testbed/stats/children/connections

Headers:
Authorization: Bearer secret

Example JSON response:

{
"children": [
{
"handle": "newca",
"last_exchange": {
"timestamp": 1632477600,
"result": "Success",
"user_agent": "krill/0.9.2"

},
"state": "active"

},
{
"handle": "oldca",
"last_exchange": {
"timestamp": 1632477600,
"result": "Success",
"user_agent": "krill"

},
"state": "active"

},
{
"handle": "brandnewca",
"last_exchange": null,
"state": "active"

(continues on next page)

8.43. krillc children connections 87

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

},
]

}

Note that krill 0.9.1 and below use the user-agent “krill”, while krill 0.9.2 and above include the version, e.g.:
“krill/0.9.2”. Other RPKI CA implementation may or may not include user-agents strings in their requests.

Furthermore note that the “last_exchange” may be “null” in case a CA was just added by the parent, but the child CA
did not import the parent XML response yet - or was otherwise unable to connect.

The “last_exchange” field will also be “null” after upgrading to krill 0.9.2. This information was not kept prior to krill
0.9.2 so, after upgrading, this will only be set when your existing child CAs connect for the first time.

8.44 krillc children suspend

If you believe that a child CA has been deactivated then you may wish to “suspend” it, rather than remove it altogether.
If you suspend a child CA, then any certificate(s) issued to it by your CA will be withdrawn, and they will no longer
be processed by RPKI validation software. This is particularly useful if the manifest and CRL of the child CA have
expired, and presumably their ROAs are no longer maintained either.

If and when a “suspended” child CA connects to your CA again, it will automatically be “un-suspended”. Meaning
that any certificate(s) previously issued to this child will be published again.

The main goal of this is to facilitate an easier recovery path in cases where a child CA suffers a long outage. By
“suspending” them until the child CA is reactivated you suppress RPKI validation errors for their expired publication
point, while ensuring that the delegation to this CA will be re-enabled as soon as it is successfully started.

Example CLI/API:

$ krillc children suspend --ca testbed --child newca --api

POST:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"suspend": true

}

Important: It is not always trivial to figure out if a child CA has been deactivated. The expiry of the child CA’s
manifest and CRL is a strong indication of this, but this information is not available to the krill CA parent. What it does
have is the knowledge of when a child CA connected for the last time.

If the child CA did not connect for a long time, then the parent may be inclined to think that they have been deactived.
This is true for child CAs running Krill 0.9.2 or above, because here the maximum configurable ‘refresh’ rate is one
hour. So, if you have not seen any connection attempts for such child CAs for, say 8 hours, then you can safely suspend
them.

However, earlier krill versions, while using a default of 10 minutes, would allow overriding this value without any
upper bound. Other RPKI CA implementations may also use longer cycles.

88 Chapter 8. Using the CLI or API

Krill User Manual

In short: be careful before deciding that a child CA is truly deactived.

8.45 krillc children unsuspend

If needed you can manually “un-suspend” a “suspended” child CA. Generally speaking there is no need do this, because
a child will be un-suspended automatically whenever it re-connects with your CA.

Example CLI/API:

$ krillc children unsuspend --ca testbed --child newca --api
POST:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"suspend": false

}

8.46 krillc children remove

Remove an existing child from a CA. This removes and revokes any certificate(s) issued to this child CA. Furthermore
this child CA, if still active or re-activated, will no longer be allowed to connect to your CA. They will have to remove
you as a parent first and then re-do the XML exchange with you in order to be re-added as a child.

if you think that the child CA may be temporarily disabled, then you may wish to “suspend” them instead.

Example CLI / API call:

$ krillc children remove --ca testbed --child newca --api
DELETE:
https://localhost:3000/api/v1/cas/testbed/children/newca

Headers:
Authorization: Bearer secret

8.47 krillc keyroll

Perform a key rollover for a CA.

Krill supports RFC 6489 Key Rollovers. The process is manual for now. I.e. it’s up to the operator to initiate a key
rollover - there is no automation based on key age for example. We expect that this is what operators would want. More
importantly though, this also means that operators should execute both steps in the process to start and finish the key
rollover:

krillc keyroll init Initialise roll for all keys held by this CA.
krillc keyroll activate Finish roll for all keys held by this CA.

8.45. krillc children unsuspend 89

https://tools.ietf.org/html/rfc6489.html

Krill User Manual

8.48 krillc keyroll init

Initialise roll for all keys held by this CA.

Example CLI/API call:

$ krillc keyroll init --ca newca --api
POST:
https://localhost:3000/api/v1/cas/newca/keys/roll_init

Headers:
Authorization: Bearer secret

Body:
<empty>

8.48.1 krillc keyroll activate

Finish roll for all keys held by this CA.

Note that RFC 6489 says that you should wait 24 hours before doing this step. So, please observe this period for planned
key rollovers. For emergency rollovers where the old key is compromised, or if this rollover is part of an emergency
migration to a new publication server, do this step as soon as possible.

Example CLI/API:

$ krillc keyroll activate --ca newca --api
POST:
https://localhost:3000/api/v1/cas/newca/keys/roll_activate

Headers:
Authorization: Bearer secret

Body:
<empty>

90 Chapter 8. Using the CLI or API

https://tools.ietf.org/html/rfc6489.html

CHAPTER

NINE

LOGIN WITH NAMED USERS

New in version v0.9.0.

Fig. 1: Checking the currently logged in user and user attributes

By default Krill requires users to authenticate using the configured secret token, and actions in the event history are
attributed to a client using the secret token or to Krill itself.

Krill also supports authenticating users of the web user interface with their own username and credentials. Actions
taken by such logged in users are attributed in the event history to their username.

To login users by username Krill must first be configured either with locally defined user details and credentials, or
with the details necessary to interact with a separate OpenID Connect compliant identity provider system.

Further reading:

9.1 Permissions, Roles & Attributes

New in version v0.9.0.

This page summarizes the different ways that Krill supports for restricting access to named users that login to Krill.
For backward compatibility, users that authenticate with the secret token are given unrestricted access to Krill.

9.1.1 Permissions

Internally within Krill each REST API endpoint requires the logged in user to have a specific Krill permission in order
to execute the request.

91

https://openid.net/connect/

Krill User Manual

9.1.2 User Attributes

User attributes are assigned by the identity provider, either in the krill.conf file for locally defined users, or in the
management interface of the OpenID Connect provider that manages your users.

Warning: By default, user attributes and their values are shown in the Krill web user interface and the web user
interface stores these attributes in browser local storage. To prevent sensitive attributes being revealed in the browser
you can mark them as private. One possible use for this is to restrict access using the exc_cas attribute but not
reveal the name of the restricted CA by doing so. See auth_private_attributes in krill.conf file for more
information.

9.1.3 Role Based Access Control

At the highest level Krill can restrict access based on user roles. A role is a named collection of internal Krill permis-
sions.

By default Krill supports three roles which can be assigned to users. A user can only have one role at a time. A role is
assigned to a user via the role user attribute (see below for more on attributes).

The default roles are:

• admin : Grants users unrestricted access.

• readwrite: Grants users the right to list, view and modify existing CAs.

• readonly : Grants users the right to list and view CAs only.

9.1.4 Attribute Based Access Control

Krill supports inc_cas and exc_cas user attributes which can be used to permit or deny access to one or more
Certificate Authorities in Krill. User attributes can also be used to make decisions in custom authorization policies.

9.2 Config File Users

New in version v0.9.0.

• Introduction

• How does it work?

• Known limitations

• Setting it up

• Advanced configuration

• Additional sources of information

92 Chapter 9. Login with Named Users

Krill User Manual

9.2.1 Introduction

By setting auth_type = "config-file" in krill.conf you can configure Krill to require users to enter a username
and password in the web user interface when logging in, rather than the secret token that is usually required:

Fig. 2: Using config file user credentials to login to Krill

Note: It is important to realize that Krill is not a complete user management system and that Config File Users therefore
have some limitations.

While Config File Users are useful as a quick way to test named user support in Krill and may suffice for simple
situations, in larger more critical settings you are strongly advised to consider using OpenID Connect Users instead.

9.2.2 How does it work?

To add a user to the krill.conf file an administrator uses the krillc command to compute a password hash for
the user and then adds an entry to the [auth_users] section including their username, password hash, salt and any
attributes that are relevant for that user.

When a user enters their username and password into the web user interface a hash of the password is computed and
sent with the username to the Krill server.

The Krill server will verify that the user logging in provided a correct password and has the LOGIN permission. On
success Krill will respond with a token which the web user interface should send on subsequent requests to authenticate
itself with Krill. The web user interface will keep a copy of this token in browser local storage until the user logs out
or is timed out due to inactivity.

Tip: The actual user password is NEVER stored on either the Krill server nor the client browser and is NEVER sent

9.2. Config File Users 93

Krill User Manual

by the client browser to the Krill server. Only password hashes are stored and transmitted.

Warning: Do NOT serve the Krill web user interface over unencrypted HTTP. While the password is never
transmitted, the authentication token that the user is subsequently issued is subject to interception by malicious
parties if sent unencrypted from the Krill server to the web user interface. Note that this is equally true when using
any credential to authenticate with Krill, whether secret token or password hash or when Krill is configured to
interact with an OpenID Connect provider.

9.2.3 Known limitations

Config File Users are easy to define and give you complete control over who has access to your Krill instance and what
level of access is granted. However, Krill is not a complete user management system and so there are some things to
remember when using Config File Users:

• Krill has no feature for requiring a user to change their password on first login. As such, by issuing users with
passwords you become responsible for delivering the new password to them securely.

• OpenID Connect providers often have support for one-time passwords (OTP) or other secondary lines of defence
to protect an account than just a username and password. Krill does not have this capability.

• Krill has no feature for generating cryptographically strong passwords. You are responsible for choosing suffi-
ciently strong passwords for your users.

• Usernames, password hashes and user attributes are sensitive information. By adding them to your krill.conf
file you become responsible for protecting them.

• If you lose your krill.conf file you will also lose the password hashes and will have to reset your users pass-
words unless you have a (secure) copy elsewhere.

• If a user forgets their password you will need to issue them with a new one. Krill does not offer a forgotten
password or password reset feature.

• Adding or changing users requires a restart of Krill. There is no support in Krill at present for reloading the user
details while Krill is running. While Krill is restarting the web user interface will be unavailable for your users.

9.2.4 Setting it up

The following steps are required to use Config File Users in your Krill setup.

1. Decide on the settings to be configured.

Decide which usernames you are going to configure, and what role and password they should have. For this example
let’s assume we want to configure the following users:

Username Password Role
joe@example.com dFdsapE5 admin
sally wdGypnx5 readonly
dave_the_octopus qnky8Zuj readwrite

94 Chapter 9. Login with Named Users

mailto:joe@example.com

Krill User Manual

2. Configure Krill

For each user generate a password hash and salt using the following command:

$ krillc config user --id joe@example.com
Enter the password to hash: ********

[auth_users]
"joe@example.com" = { password_hash="521e....0529", salt="d539....115e" }

Then add the auth_type, [auth_users] and individual user lines to krill.conf. The end result should look
something like this:

auth_type = "config-file"

[auth_users]
"joe@example.com" = { attributes={ role="admin" }, password_hash="521e....0529",␣
→˓salt="d539....115e" }
"sally" = { attributes={ role="readonly" }, password_hash="...", salt="..." }
"dave_the_octopus" = { attributes={ role="readwrite" }, password_hash="...", salt="..." }

3. Go!

Restart Krill and deliver the chosen passwords to the respective users to whom they belong. The users should now be
able to login to your Krill instance.

Warning: Take whatever steps you think are necessary to ensure that the passwords are delivered securely to your
users.

9.2.5 Advanced configuration

The information above gives you the basic structure for the configuration file syntax needed to configure local users in
Krill.

See Permissions, Roles & Attributes for information about other user attributes and configuration settings that you
might want to use.

See Custom Authorization Policies for information about customizing the configuration even further.

Below is a slightly modified version of the example above that also uses the inc_cas, exc_cas and
auth_private_attributes features and adds a user that has custom team attributes as well. Notice how the team
user does NOT have a role attribute!

auth_type = "config-file"
auth_private_attributes = ["exc_cas"]

[auth_users]
"joe@example.com" = { attributes={ role="admin" }, password_hash="f45d...b25f", salt=".
→˓.." }
"sally" = { attributes={ role="readonly", inc_cas="ca1,ca3" }, password_
→˓hash="...", salt="..." }

(continues on next page)

9.2. Config File Users 95

Krill User Manual

(continued from previous page)

"dave_the_octopus" = { attributes={ role="readwrite" }, exc_cas="some_private_ca" },␣
→˓password_hash="...", salt="..." }
"rob_from_team_one" = { attributes={ team="t1", teamrole="readwrite" }, password_hash="..
→˓.", salt="..." }

9.2.6 Additional sources of information

The krill.conf file is the definitive guide to the possible values that can be used in the Krill configuration file. If in
doubt, consult the krill.conf file that came with your copy of Krill.

Login related events will be reported in the Krill logs:

• Login failures are reported at error level.

• Login successes are reported at info level.

• Additional diagnostics may be reported at debug or trace level.

9.3 OpenID Connect Users

New in version v0.9.0.

• Introduction

– Why OpenID Connect?

– Why not OAuth 2.0?

• How does it work?

– The user experience

– In the background

• Known limitations

• Choosing a provider

• Setting it up

– Overview

– Using Keycloak

– With other providers

96 Chapter 9. Login with Named Users

Krill User Manual

9.3.1 Introduction

OpenID Connect is a widely supported standard that builds on the OAuth 2.0 standard to authenticate users and provide
basic profile information about those users.

The user visible part of the login experience when using OpenID Connect is handled by the OpenID Connect provider
and may look quite different to the Krill web user interface:

Fig. 3: Using Azure Active Directory as an OpenID Connect provider with Krill

To use OpenID Connect Users in Krill you will either need to run your own OpenID Connect provider or use one
provided by a 3rd party service provider.

Why OpenID Connect?

From the OpenID Connect FAQ:

What problem does OpenID Connect solve?

It lets app and site developers authenticate users without taking on the responsibility of storing and man-
aging passwords in the face of an Internet that is well-populated with people trying to compromise your
users’ accounts for their own gain.

OpenID Connect takes the lessons learned from earlier identity protocols and improves on them. It is widely imple-
mented and deployed, and for situations where the primary identity provider does not implement OpenID Connect there
are OpenID Connect providers that can act as a bridge to systems that implement other identity protocols.

As a modern, tried & tested and widely implemented protocol it is therefore quite likely that it is either already in use
by (potential) Krill operators or viable for them to adopt.

9.3. OpenID Connect Users 97

https://openid.net/connect/
https://openid.net/connect/faq/
https://openid.net/developers/certified/
https://openid.net/developers/certified/

Krill User Manual

Why not OAuth 2.0?

From https://oauth.net/articles/authentication/:

OAuth 2.0 is not an authentication protocol.

Much of the confusion comes from the fact that OAuth is used inside of authentication protocols, and
developers will see the OAuth components and interact with the OAuth flow and assume that by simply
using OAuth, they can accomplish user authentication. This turns out to be not only untrue, but also
dangerous for service providers, developers, and end users.

9.3.2 How does it work?

Let’s assume that the OpenID Connect provider is compatible with Krill and that Krill has been registered with the
provider (see below for more on these topics).

The user experience

When an end user visits the Krill website in their browser they will be redirected to the login page of the OpenID
Connect provider. This is NOT part of Krill.

For example, when logging in to a Krill instance connected to the OpenID Connect provider in a large company, the
end user might see a very familiar login page. That’s because it is probably a page they have to login to in order to use
many other services in their company. Often this login page will even be themed to match the corporate branding.

The user enters their credentials into the OpenID Connect provider login page. At this point Krill knows nothing about
who is logging in at the provider login form.

Tip: Krill NEVER receives the username or password that the user enters in to the OpenID Connect provider login
page and Krill has no control over the appearance and/or behaviour of the OpenID Connect provider login page.

If the login is successful, from the users perspective their browser is then directed back to Krill where they see the Krill
web user interface as if they are logged in. Krill will provide the web user interface with a token which the web user
interface should send on subsequent requests to authenticate itself with Krill. The web user interface will keep a copy
of this token in browser local storage until the user logs out or is timed out due to inactivity.

Krill will honour any session expiration time communicated to it by the OpenID Connect provider. When using OpenID
Connect Users it is therefore possible that the user will be informed that they cannot perform the requested action
because their login session has timed out and they need to login again. Where possible Krill will automatically extend
the login session to avoid this happening.

In the background

What the user doesn’t see, except perhaps if their network connection is very slow, is that there are “hidden” intermediate
steps occuring in the login flow, between the browser and Krill and between Krill and the OpenID Connect provider.
These steps implement the OpenID Connect “Authorizaton Code Flow”.

If the user logged in correctly at the OpenID Connect provider login page and Krill was correctly registered with the
provider and the provider was correctly setup for Krill, then Krill will receive a temporary Authorization Code which
it exchanges for an OAuth 2.0 Access Token (and maybe also an OAuth 2.0 Refresh Token) and an OpenID Connect ID
Token.

The ID Token includes so-called OAuth 2.0 claims, metadata about the user logging in. These claims are the key to
whether or not Krill is able to determine which rights, if any, to grant to the user that is attempting to login.

98 Chapter 9. Login with Named Users

https://oauth.net/articles/authentication/
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://www.oauth.com/oauth2-servers/access-tokens/

Krill User Manual

9.3.3 Known limitations

OpenID Connect Users avoid the problems with Config File Users but require more effort to setup and maintain:

• Requires operating another service or using a 3rd party service.

• Confguring Krill and the OpenID Connect provider is more involved than setting up Config File Users.

• If Krill cannot contact the OpenID Connect provider, users will be unable to login to Krill with their OpenID
Connect credentials. It will however still be possible to authenticate with Krill using its secret token.

Warning: If you encounter HTTP 502 Bad Gateway errors from your HTTP proxy in front of Krill when logging
in, or login loops where you are taken back to the OpenID Connect provider login page but the Krill logs show
a successful login, you may need to increase the HTTP request and/or response header buffer sizes used by your
proxy.

With NGINX this can be done by increasing settings such as proxy_buffer_size, proxy_buffers,
large_client_header_buffers (or http2_max_field_size and http2_max_header_size before NGINX v1.19.7).
Thanks to GitHub user racompton for the large_client_header_buffers tip! If using Kubernetes use the
equivalent NGINX ingress controller ConfigMap settings, e.g. http2-max-field-size. Thanks to GitHub user
TheEnbyperor for the HTTP/2 and Kubernetes tips!

These issues occur because the size of the HTTP request & response headers on login to Krill when using OpenID
Connect can be quite large.

9.3.4 Choosing a provider

There are many identity providers that support OpenID Connect to choose from. Some are software products that you
can host yourself, others are online services that you can create an account with.

Any OpenID Connect provider that you choose must implement the following standards:

• OpenID Connect Core 1.0

• OpenID Connect Discovery 1.0

• OpenID Connect RP-Initiated Logout 1.0 (optional)

• RFC 7009 OAuth 2.0 Token Revocation (optional)

Krill has been tested with the following OpenID Connect providers (in alphabetical order):

• Amazon Cognito

• Keycloak

• Microsoft Azure Active Directory

• Micro Focus NetIQ Access Manager 4.5

Warning: Krill has been verified to be able to login and logout with Google Cloud accounts. However, it is not
advisable to grant access to Google accounts in general. Instead you should use a Google product that permits you
to manage your own pool of users so that you can restrict access to just these users. Additionally, if you wish to
assign different Krill rights to different users you will need some way to mark the users to indicate which role they
should receive, e.g. by grouping them or configuring custom claims.

9.3. OpenID Connect Users 99

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffer_size
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffers
http://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers
https://nginx.org/en/docs/http/ngx_http_v2_module.html#http2_max_field_size
https://nginx.org/en/docs/http/ngx_http_v2_module.html#http2_max_header_size
https://github.com/racompton
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#http2-max-field-size
https://github.com/TheEnbyperor
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://tools.ietf.org/html/rfc7009
https://docs.aws.amazon.com/cognito/latest/developerguide/open-id.html
https://www.keycloak.org/docs/latest/server_admin/index.html#oidc-clients
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-oidc
https://www.netiq.com/documentation/access-manager-45-developer-documentation/administration-rest-api-guide/data/oauth-openid-connect-api.html
https://developers.google.com/identity/protocols/oauth2/openid-connect
https://cloud.google.com/identity-platform/docs/how-to-configure-custom-claims

Krill User Manual

Tip: If your provider does not offer sufficient control over the claim values it exposes to Krill, or if you do not have the
ability to change these values to meet your needs, Krill supports a hybrid mode whereby authentication is handled by
the OpenID Connect provider, but authorization can be based in whole or in part on config file defined user attributes.

9.3.5 Setting it up

Overview

The process for setting up Krill to support login by users of an OpenID Connect provider follows the same basic pattern
for all providers but differs greatly in the details from one provider to the next.

In short, to setup any OpenID Connect provider with Krill the following steps must be taken:

1. Decide on the settings to be configured

Ensure you have the basic pieces of information that you need. For example:

• Which URL will Krill be available at?

• Which user(s) will have admin rights in Krill?

• Is there some property of these users that distinguishes them from other users (for example they
may already be members of some internal Active Directory group) or will you need to mark them
out in some way so that Krill can spot that they should be admins?

• Is this property available by default as part of the standard claims sent by the provider to the
client, or is it a provider specific claim or will it need to be configured in the provider as a custom
claim?1

• If no suitable claim values can be arranged with the provider, consider using hybrid mode instead.

2. Gain access to the provider

This could be installing and operating provider software yourself, or signing up to a cloud service, or arranging
for support from your internal IT department to have changes made to your in-house provider on your behalf.

3. Register Krill with the provider

You will need to supply the Krill redirect URLs:2

• https://yourdomain/auth/callback

• https://yourdomain/ (if the provider supports Connect RP-Initiated Logout 1.0)

You should receive back from the registration process three pieces of information that will be needed to configure
Krill:

1 Some provider specific information regarding claims can be found at the following links: Microsoft Azure Active Directory (here and here),
Amazon Cognito (here)

2 Alternatively your provider may support wildcard redirect URLs in which case you can supply https://yourdomain/*. However wildcard URLs
are not advised as they could potentially be abused to redirect requests to other locations.

100 Chapter 9. Login with Named Users

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://yourdomain/auth/callback
https://yourdomain/
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-optional-claims
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-fed-group-claims
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://yourdomain/*

Krill User Manual

• The provider OpenID Connect Discovery 1.0 issuer URL3

• A client ID

• A client secret

4. Create users, groups and/or claims in the provider

If all of your users will have admin rights in Krill you can ignore groups and claims and just create users.

If however you want some users to have different rights than other users you will need to configure your provider
to include some hint about the role that a user should have in the claims data that it sends to Krill.

The manner in which this is setup varies greatly by provider. With Keycloak for example you have direct control
over the claim data that is exposed to the OpenID Connect client and have multiple different ways to tell Krill
via the claims data which role each user should have in Krill.

With Azure Active Directory however you are by default limited to only being able to expose claims that it defines
or to add users to groups. The group memberships can be exposed as claim data and Krill can parse the group
data and match against it.

5. Configure additional provider features

• How long are the tokens issued by the provider valid for? Can the provider issue refresh tokens? These
properties affect how long a user can remain logged in to Krill.

• Ensure that the provider has a real TLS certificate, or for in-house certificates you will need a copy of the
Certificate Authority root certificate so that you can configure Krill to trust it. If neither are possible you
can configure Krill to trust the insecure certificate anyway, but this is not advised.

• Do you need to configure the provider to ensure that the claims you want to use will be sent to Krill?

6. Configure Krill

Lastly, add the issuer URL, client ID and client secret to krill.conf and if necessary configure any claim
mapping rules to instruct Krill how to obtain role information from the claims data that it will be sent.

You may also need to use some of the other OpenID Connect specific configuration settings that Krill offers. For
example to use the Amazon Cognito logout endpoint you have to configure that manually.

Tip: The krill.conf file contains example configurations for providers that Krill has been tested with.

3 A correct URL will either end in /.well-known/openid-configuration or should have that appended to it, e.g. the Google issuer URL is: https:
//accounts.google.com/.well-known/openid-configuration

9.3. OpenID Connect Users 101

https://accounts.google.com/.well-known/openid-configuration
https://accounts.google.com/.well-known/openid-configuration

Krill User Manual

Using Keycloak

In this section you will see how to setup Keycloak as an OpenID Connect provider for Krill.

The following steps are required to use OpenID Connect Users in your Krill setup.

• 1. Decide on the settings to be configured.

• 2. Configure the provider

• 3. Configure Krill

• 4. Go!

1. Decide on the settings to be configured.

For this example let’s assume we want to configure the following users:

Username Email Password Role
joe@example.com joe@example.com dFdsapE5 admin
sally sally@example.com wdGypnx5 readonly
dave_the_octopus dave@example.com qnky8Zuj readwrite

And let’s assume that we are going to use a local Docker Keycloak container as our OpenID Connect provider which
will be running at https://localhost:8443/.

2. Configure the provider

Let’s walk through configuring the provider step by step:

• Download and run Keycloak

• Login to the Keycloak admin UI

• Create a realm

• Create a client application

• Configure a role mapper

• Create the users

102 Chapter 9. Login with Named Users

https://www.keycloak.org/
mailto:joe@example.com
mailto:joe@example.com
mailto:sally@example.com
mailto:dave@example.com
https://www.keycloak.org/
https://localhost:8443/

Krill User Manual

Download and run Keycloak

$ sudo docker run \
--detach \
--name keycloak \
--publish 8443:8443 \
--env KEYCLOAK_USER=admin \
--env KEYCLOAK_PASSWORD=password \
--env DB_VENDOR=h2 quay.io/keycloak/keycloak:12.0.4

Warning: Do NOT run Keycloak like this in production. This command instructs Keycloak to use an in-memory
H2 database which is convenient for demonstration and testing purposes but should not be used in a production
setting.

Follow the logs until Keycloak is ready:

$ docker logs --follow keycloak
...
14:31:20,766 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: Keycloak 12.0.4␣
→˓(WildFly Core 13.0.3.Final) started in 23954ms - Started 687 of 972 services (687␣
→˓services are lazy, passive or on-demand)
14:31:20,768 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060: Http management␣
→˓interface listening on http://127.0.0.1:9990/management
14:31:20,769 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin console␣
→˓listening on http://127.0.0.1:9990

Login to the Keycloak admin UI

• Browse to https://localhost:8443/.

• Accept the self-signed TLS certificate.

• Click on Administration Console.

• Login as user admin password password.

Create a realm

Note: A realm is a Keycloak concept and is a good example of how providers differ in what needs to be done to set
them up.

• Hover over Master in the top left and click on the Add Realm button that appears.

• Set the field values as follows then click Create:

Field Value
Name krill

9.3. OpenID Connect Users 103

https://localhost:8443/

Krill User Manual

Create a client application

Tip: This is where we register Krill with the OpenID Connect provider.

Continuing in the KeyCloak web UI with realm set to krill:

• Click Clients (top left) then Create (top right).

• Set the field values as follows then click Save:

Field Value
Client ID krill

• On the Settings tab that is shown next set the field values as follows then click Save at the bottom.

Field Value
Access Type confidential4
Valid Redirect URIs https://localhost:3000/*5

• Generate credentials for Krill to use:

– Open the Credentials tab (at the top).

– Copy the Secret value somewhere safe, we’ll need it later.

Configure a role mapper

Tip: This is where we create custom claims that Krill can detect and use to determine which rights in Krill to assign
to the user.

• Open the Mappers tab (at the top) and then click Create.

• Set field values as follows then click Save at the bottom:

Field Value
Name krill_role
Mapper Type User Attribute
User Attribute role
Token Claim Name role
Claim JSON Type String

4 Krill is an OAuth 2.0 “Confidential Client” as defined in RFC 6749 Section 2.1.
5 We could configure this explicitly as two separate redirect URLs: https://localhost:3000/auth/callback (for post-login) and https://localhost:

3000/ (for post-logout). However, as this is a localhost demo and Keycloak supports wildcard redirect URLs we can keep it simple in this case.

104 Chapter 9. Login with Named Users

https://tools.ietf.org/html/rfc6749#section-2.1
https://localhost:3000/auth/callback
https://localhost:3000/
https://localhost:3000/

Krill User Manual

Create the users

• Click Users (on the left) then click Add User (top right).

• Set field values as follows then click Save at the bottom:

Field Value
Username <THE USERS NAME>
Email6 <THE USERS EMAIL ADDRESS>

• Open the Credentials tab and set the field values as follows:

Field Value
Password <THE USERS PASSWORD>
Password Confirmation <THE USERS PASSWORD>

• Leave Temporary set to ON.7

• Click Set Password.

• When asked “Are you sure you want to set a password for this user?” click Set password.

• Open the Attributes tab.

– Enter Key role with value <THE USERS ROLE> and press Add.

– Click Save at the bottom.

Repeat the above adding the other users.

3. Configure Krill

Add the following to your krill.conf file: (remove or comment out any existing auth_type line)

auth_type = "openid-connect"

[auth_openidconnect]
issuer_url = "https://localhost:8443/auth/realms/krill"
client_id = "krill"
client_secret = "<SECRET VALUE SAVED EARLIER>"
insecure = true 8

6 By default Krill expects there to be an “email” claim in the ID Token response from the provider. If we didn’t setup an email here we would
need to define a claim mapping so that Krill could extract the Username value that we provide from some other claim field. In the case of Keycloak
that would be the preferred_username field. We’ll revisit this topic later.

7 This is a good example of where using an OpenID Connect provider has benefits over using Config File Users. By leaving Temporary set to
ON, Keycloak will require the user to change their password on first login. Krill doesn’t have this functionality itself. This doesn’t remove the need
to communicate an initial unique password securely to the user, but the opportunity for abuse is more limited and passwords are not so readily visible
to the Krill operator.

8% Do NOT use this in a production setting. We have to set insecure to true in this demonstration because our Keycloak instance does not have
a real TLS certificate. Without insecure set to true Krill would reject the insecure self-signed TLS certificate.

9.3. OpenID Connect Users 105

https://localhost:8443/auth/realms/krill

Krill User Manual

4. Go!

Restart Krill and browse to the Krill web user interface. Your users should now be able to login with the Keycloak
login form.

Once logged in your users should have the role that you assigned to them:

With other providers

The OpenID Connect Users support within Krill is intended to be able to connect to and work with as many OpenID
Connect providers as possible.

As such there are quite a few extra configuration options listed in krill.conf each of which is accompanied by
documentation explaining what it does and how to use it.

Rather than duplicate that documentation here, instead we will focus on a few of the more difficult features to use and
problems to overcome.

106 Chapter 9. Login with Named Users

Krill User Manual

• Understanding claims

• Matching claims by name

• Matching claims by value

• Matching claims by partial value

• Matching claims to config values (aka ‘hybrid’ mode)

• Requesting missing claims

• Diagnosing login problems

Understanding claims

Before we look at how to match claims let’s first take a look at what claims actually are and what it is that Krill has to
match against.

Claims are part of the JSON data sent by the provider to the client. Krill must first extract this JSON data from the
encoded, signed JWT data. The resulting claims look something like this:

{
"iss": "http://server.example.com",
"sub": "248289761001",
"aud": "s6BhdRkqt3",
"nonce": "n-0S6_WzA2Mj",
"exp": 1311281970,
"iat": 1311280970,
"name": "Jane Doe",
"given_name": "Jane",
"family_name": "Doe",
"gender": "female",
"birthdate": "0000-10-31",
"email": "janedoe@example.com",
"picture": "http://example.com/janedoe/me.jpg"

}

Source: https://openid.net/specs/openid-connect-core-1_0.html#id_tokenExample

Thus if you were to configure Krill to use the “given_name” claim as the ID of the user in Krill, like so:

[auth_openidconnect.claims]
id = { jmespath="given_name" }

Then in this example Krill would use the value “Jane” as the ID of the user logged in to Krill.

9.3. OpenID Connect Users 107

https://openid.net/specs/openid-connect-core-1_0.html#id_tokenExample

Krill User Manual

Matching claims by name

Imagine that you want to show users by their name in the Krill web user interface and not by their email address, and
that you know that the full name is available in a claim called name.

This can be achieved using a config section that looks like this in krill.conf:

[auth_openidconnect.claims]
id = { jmespath="name" }

This tells Krill to search all of the claim data it receives for a field called name and use that as the ID for the user in
Krill. This ID will also be logged in the Krill event history as the actor responsible for any events that they caused.h

What is JMESPath? According to https://jmespath.org/:

“JMESPath is a query language for JSON.”

JSON is the format that OpenID Connect claim data is provided in by the provider. JMESPath can therefore be used to
tell Krill which particular part from within the JSON it should use.

This is a very trivial example of the power of JMESPath. You can find out more about it at the https://jmespath.org/
website and in krill.conf. Krill comes with a couple of extensions to JMESPath syntax which are also documented
in krill.conf.

Matching claims by value

Imagine that your users already exist in an OpenID Connect compatible identity provider and that the only distinguishing
feature that you can use to assign them admin or some other role within Krill is their group membership. Now imagine
that these groups do not have nice friendly names but instead are identified by an array of UUIDs!

How do you tell Krill which users should have readonly access and which users should be have readwrite access?

This is actually a real situation you can encounter with Azure Active Directory. JMESPath can also be used to handle
this scenario, albeit with a much more complicated expression:

[auth_openidconnect.claims]
ro_role = { jmespath="resub(groups[?@ == 'gggggggg-gggg-gggg-gggg-gggggggggggg'] | [0],
→˓'^.+$', 'readonly')", dest="role" }
rw_role = { jmespath="resub(groups[?@ == 'hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh'] | [0],
→˓'^.+$', 'readwrite')", dest="role" }

Let’s break the ro_role claim mapping rule down:

• gggg and hhhh values represent the UUIDs of the groups to find in a claim array called groups.

• The resub JMESPath function is a Krill extension to JMESPath that performs regular expression based substitu-
tion.

• groups[?@ == ‘. . . ’] finds all entries in the groups array that match the specified UUID.

• We then assume that there is only ever zero or one matches and just use the first match | [0] found.

• Then we instruct Krill to take the entire value with ^.+$.

• And to replace it with the value readonly.

• Finally, instead of assigning the value readonly to the user attribute ro_role, dest is used to instead store readonly
in a user attribute called role.

108 Chapter 9. Login with Named Users

https://jmespath.org/
https://jmespath.org/

Krill User Manual

As role is the user attribute that the Krill authorization policy engine looks at by default this will cause the user to be
assigned the readonly role if their user is a member of the group with the UUID value that represents the “readonly”
group!

If we had only one rule we could write role on the left, but as we have two rules that both try to provide a value for the
same user attribute and the keys on the left of the = must be unique, we use the dest trick to map any value found to
the role user attribute.

Matching claims by partial value

Now imagine that the group membership is instead expressed not as array elements that each exactly match some
group name or UUID that we can look for, but that each array element is a long string composed of key=value comma
separated pairs.

This can happen when the identity provider expresses group memberships in LDAP X.500 format (see RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names).

For example you might see something like CN=Joe Bloggs,OU=NetworkTeam-Admins,DC=mycorp.com, represent-
ing a user called Joe who is in the administrators group of the networking team of a company called mycorp.com.

Hopefully you’ll only need simple rules but also equally hopefully if you need more powerful matching Krill will be
up to the task. For example, here’s a more complicated rule:

dynamic_role = { jmespath="resub(memberof[?starts_with(@, 'CN=DL-Krill-')] | [0], '^
→˓CN=DL-Krill-(?P<role>[^-,]+).+', '$role')" }

This rule will match elements of an array called memberof whose value starts with CN=DL-Krill-, and wlll then
extract just the part after that upto a comma or dash, and will use that captured value as the Krill role user attribute!

Matching claims to config values (aka ‘hybrid’ mode)

Usually when defining a claim mapping there is no need to define the source of the claim. Krill will search all of the
different OpenID Connect provider claim sources that it supports (standard and additional claims in both the ID Token
and User Info responses) for a matching claim.

However, if needed you can specify the claim source explicitly on a per claim basis. Possible uses for this include:

• Selecting the right claim when the same claim name exists in more than one claim source but with different
values.

• Defining user attributes in the Krill configuration when the claim values cannot be configured in the provider
(perhaps due to lack of support by or access to the provider). This is known as hybrid mode because it causes
Krill to use a hybrid of OpenID Connect provider for authentication and config file defined user attributes for
authorization.

When defining a claim mapping we have so far seen jmespath and dest settings, but there is also a source setting.
The source can be set to one of the following values:

• config-file

• id-token-standard-claim

• id-token-additional-claim

• user-info-standard-claim

• user-info-additional-claim

9.3. OpenID Connect Users 109

https://www.ietf.org/rfc/rfc2253.txt
https://www.ietf.org/rfc/rfc2253.txt

Krill User Manual

The first one is the really interesting one. The rest should hopefully never be needed as by default Krill searches all of
the possible OpenID Connect provider claim sources that it supports.

When using the config-file source there are two changes in the way that Krill looks up the claim value:

1. The jmespath setting is not used. Instead an attribute with the same name as the TOML key of the claim
mapping is looked for on the user.

2. The user attributes are taken from a config file entry with the id of the current user is looked up in the
[auth_users] config file section.

Note that the id of the current user is still determined by a normal OpenID Connect claim lookup, i.e. by default the
email value reported by the provider for the user is used unless you define a claim mapping for id explicitly.

For example, to identify users by the given name reported by the OpenID Connect provider, and to set their role using
entries in krill.conf instead of basing the role on provider claim values, you could do something like this:

[auth_users]
"Joe Bloggs" = { attributes={ role="admin" } }
"Sally Alley" = { attributes={ role="readonly" } }

[auth_openidconnect.claims]
id = { jmespath="given_name" }
role = { source="config-file" }

This will cause a user that logs in via the OpenID Connect provider who has a given_name claim value of Joe Bloggs
to be granted the admin role in Krill.

Requesting missing claims

If you find that expected claim data is indeed not being sent by the provider this may not be an issue with the provider,
rather it may be that the provider requires that Krill ask to be sent those claims.

Look at the extra_login_scopes setting in krill.conf, at OpenID Connect Core 1.0 section 5.4 Requesting Claims
using Scope Values and at the documentation for your provider. Try and determine if there is a particular “scope” value
that should be sent by Krill that is not currently being sent.

Diagnosing login problems

If you think your OpenID Connect provider should be providing certain claims about your users but are not sure, or
if you are not redirected properly to the OpenID Connect provider login page or are not redirected post-login back to
Krill, you can increase the log level.

• log_level = "debug" will cause Krill to log more about what it is doing.

• log_level = "trace" will cause Krill to log OpenID Connect requests and responses.

Note however that some of the communication will be between your browser and the OpenID Connect provider and
that will not be visible in the Krill logs. To monitor that you will need to use the network inspector tool of your browser
to see the requests and responses being exchanged.

Warning: Trace level logging is VERY verbose and can reveal sensitive information such as OAuth 2.0 Access
Tokens and users profile data. Only enable trace level logging while investigating a problem. Normally it should
be sufficient to use log_level = "warn".

110 Chapter 9. Login with Named Users

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Krill User Manual

9.4 Custom Authorization Policies

New in version v0.9.0.

• Introduction

• Examples

– role-per-ca-demo

– team-based-access-demo

• Using custom policies

• Writing custom policies

– Defining new roles

– Defining new rules

– Diagnosing issues

9.4.1 Introduction

Note: This is an advanced topic, you don’t need this feature to get started with Named Users. If you are considering
implementing a custom authorization policy we’d love to hear from you!

Custom authorization policies are a way of extending Krill by supplying one or more files containing rules that will be
added to those used by Krill when deciding if a given action by a user should be permitted or denied.

9.4.2 Examples

Some examples showing the power of this can be seen in doc/policies directory in the Krill source code repository.

role-per-ca-demo

By default Krill lets you assign a role to a user that will be enforced for all of the actions that they take irrespective of
the CA being worked with. The role-per-ca-demo example extends Krill so that a user can be given different roles for
different CAs.

The demo also shows how to use new user attributes to influence authorization decisions, in this case by looking for a
user attribute by the same name as the CA being worked with, and if found it uses the attribute value as the role that
the user should have when working with that CA.

Finally, the demo demonstrates how to add new roles to Krill by adding two new roles that are more limited in power
than the default roles in Krill:

• A readonly-like role that also has the right to update ROAs.

• A role that only permits a user to login and list CAs.

9.4. Custom Authorization Policies 111

mailto:rpki-team@nlnetlabs.nl
https://github.com/NLnetLabs/krill/tree/main/doc/policies

Krill User Manual

team-based-access-demo

The team-based-access-demo shows how one can define teams in the policy:

• Users can optionally belong to a team.

• Users can have a different role in the team than outside of it.

• Being a member of a team grants access to the CAs that the team works with.

The example works by defining the team names in the policy file. Each team is given a name and a list of CAs it works
with. Krill is then extended to understand two new user attributes:

• team - which team a user belongs to

• teamrole - which role the user has in the team

9.4.3 Using custom policies

To use a custom policies there must be an auth_policies setting in krill.conf specifying the path to one ore more
custom policy files to load on startup.

auth_type = "..."
auth_policies = ["doc/policies/role-per-ca-demo.polar"]

Warning: Krill will fail to start if a custom authorization policy file is syntactically invalid or if one of the self-
checks in the policy fails.

Warning: Policy files should only be readable by Krill and trusted operating system user accounts.

Krill performs some basic sanity checks on startup to verify that its authorization policies are working as expected,
but a malicious actor could make more subtle changes to the policy logic which may go undetected, like granting
their own user elevated rights in Krill.

If a malicious user is able to write to the policy file they may however already be able to do much more significant
damage than editing a policy file!

Note: Policy files are not reloaded if changed on disk while Krill is running.

For policies that only contain rules this is not a problem as they would not be expected to change very often, if ever.

However, for policies that define configuration in the policy file, such as the team-based-access-demo, changes to the
policy configuration will not take effect until Krill is restarted.

112 Chapter 9. Login with Named Users

Krill User Manual

9.4.4 Writing custom policies

Policies are written in the Polar language. The following articles from the Oso website can help you get started with
Polar:

• The Polar Language

• Write Oso Policies (30 min)

• Polar Syntax Reference

• Rust Types in Polar

The core policies and permissions that Krill uses are embedded into Krill itself and cannot be changed. It is however
possible to add new roles and to add new logic based around the value of custom user attributes.

Defining new roles

Krill roles are defined by role_allow("rolename", action: Permission) Polar rules. The rule is tested if the
role of the current user is “rolename”. The current role definitions test if the requested action is in a set defined to be
valid for that role.

Tip: You can see the built-in role and permission definitions in the Krill GitHub repository.

To define a new role that grants read only rights plus the right to update ROAs one could write the following Polar rule:

role_allow("roawrite", action: Permission)
role_allow("readonly", action) or
action = ROUTES_UPDATE;

This example is actually taken from the role-per-ca-demo.polar policy.

Defining new rules

Let’s write a rule that completely prevents the update of ROAs.

When Oso does a permission check the search for a matching rule starts by matching rules of the form allow(actor,
action, resource).

Tip: “resource” in this context is a Polar term and should not be confused with the RPKI term “resource”.

The Krill policy delegates from its allow rules immediately to a special disallow(actor, action, resource)
rule. The only definition of the disallow() rule in Krill by default says if false, i.e. nothing is disallowed.

While technically you can prevent an action by cut -ing out of an allow() rule that is more specific than any other
allow() rules, it’s not always possible to ensure that your rule is the most specific match. That’s where disallow()
comes in handy.

Let’s use disallow() to implement our rule.

Create a file called no_roa_updates.polar containing the following content:

9.4. Custom Authorization Policies 113

https://docs.osohq.com/rust/learn/polar-foundations.html
https://docs.osohq.com/rust/getting-started/policies.html
https://docs.osohq.com/rust/reference/polar/polar-syntax.html
https://docs.osohq.com/rust/reference/polar/classes.html
https://github.com/NLnetLabs/krill/blob/master/defaults/roles.polar
https://github.com/NLnetLabs/krill/blob/master/src/daemon/auth/common/permissions.rs

Krill User Manual

define our new rule: disallow all ROA updates
disallow(_, ROUTES_UPDATE, _);

we could also write this more explicitly like so:
disallow(_, ROUTES_UPDATE, _) if true;

add a test to check that our new rule works by
showing that an admin user can no longer update
ROAs!
?= not allow(new Actor("test", { role: "admin" }), ROUTES_UPDATE, new Handle("some_ca"));

Let’s break this down:

• The _ character is Polar syntax for “match any”.

• Lines starting with # are comments.

• Lines starting with ?= defines self-test inline queries that will be executed when Krill starts. If a self-test inline
query fails Krill will exit with an error.

The rule that we have created says that for any actor trying to update a ROA on any “resource” (i.e. Certificate Author-
ity), succeed (i.e. disallow the attempt).

If we now set auth_policies = ["path/to/no_roa_updates.polar"] in our krill.conf file and restart
Krill it will no longer be possible for anyone to update ROAs.

This is obviously not the most useful policy, but it demonstrates the idea :-)

Diagnosing issues

If a rule doesn’t work as expected a good way to investigate is to add more self-test inline queries.

If that fails you can set log_level = "debug" and set O/S environment variable POLAR_LOG=1 when runnng Krill.
This will cause a huge amount of internal Polar diagnostic logging which will show exactly which rules Polar evaluated
in which order with which parameters and what the results were.

Note: Clients using the Krill REST API directly or via krillc cannot authenticate using named users, they can only
authenticate using the secret token. If you need this capability please let us know.

114 Chapter 9. Login with Named Users

https://github.com/NLnetLabs/krill/issues/new/choose

CHAPTER

TEN

RUNNING A PUBLICATION SERVER

Important: It is highly recommended to use an RPKI publication server provided by your parent CA, if available.
This relieves you of the responsibility to keep a public rsync and web server available at all times.

NIC.br, ARIN and APNIC provide publication as a service to their members.

10.1 Why run your own?

If your parent CA does not offer publication as a service, then you will need to run your own server. But another reason
why you may want to run your own Publication Server is that it will allow you to delegate your CA’s resources to your
own child CAs - e.g. for business units - and allow your children to publish at your central repository as well.

In this model you will need to set up your CA as a child under your parent, and set it up to publish at your local
Publication Server:

10.2 Install

Krill comes with an embedded Publication Server. You can use this to offer an rfc:8181 Publication Protocol service
to your own CA, as well as remote CAs - for example CAs for relations that you delegated Internet Number Resources
to.

In principle you can enable the Publication Server on the same Krill instance that you use to operate your CAs. But,
it may be better to use a separate instance for this purpose. This will allow more fine grained access control to either
instance, and it makes it somewhat easier to parse the log files in case of issues.

Here we will document a setup using a separate Publication Server instance.

10.3 Configure

Your Publication Server can use a very minimal configuration file, similar in style to the one used by the Krill CA
server. You should configure the following settings:

Choose your own secret for the authorization token for the CLI and API
admin_token =

If you installed krill using a package, then the default data directory
(continues on next page)

115

Krill User Manual

Fig. 1: Running a publication server for yourself and your children

116 Chapter 10. Running a Publication Server

Krill User Manual

(continued from previous page)

and pid options are probably fine.
#
If you installed krill by hand then you may wish to set the following:
data_dir = "/path/to/your/krillpubd/data/"
pid_file = "/path/to/your/krillpubd/krill.pid"

Similarly, if you installed krill as a package it will use syslog, and
this is probably desirable. If you want to use file logging you can
configure this as follows, but note that there is no built-in log rotation
in Krill.
log_type = "file"
log_file = "/path/to/your/krill.log"

We recommend that you let the Krill daemon listen on localhost
only, and use a proxy with proper HTTPS set up in front of it.
However, you should configure the 'service_uri' property in your
configuration file, so that your CAs will be able to connect to
your server to publish. You should provide the 'base' hostname
and optional port only. The actual URI that your CAs will connect
to is: $service_uri/rfc8181
#
NOTE: This can be a different base URI from the one used to
to serve the content of your repository - that URI is
is configured when you initialise your Publication Server
through the CLI.
service_uri = "https://krill-repo-server.example.com/"

Disable the download of BGP information. Unless you are also using
this server to host your CAs there is no need to keep this information
in memory.
bgp_risdumps_enabled = false

If you want to review all options, you can download the default config file.

10.4 Proxy for Remote Publishers

Krill runs the RFC8181 Publication Server. Remote publishers, CAs which use your Publication Server, will need to
connect to this under the /rfc8181 path under the service_uri that you specified in your server.

Make sure that you set up a proxy server such as NGINX, Apache, etc. which uses a valid HTTPS certificate, and
which proxies /rfc8181 to Krill.

Note that you should not add any additional authentication mechanisms to this location. RFC 8181 uses cryptograph-
ically signed messages sent over HTTP and is secure. Note that verifying messages and signing responses can be
computationally heavy, so if you know the source IP addresses of your publisher CAs, you may wish to restrict access
based on this.

10.4. Proxy for Remote Publishers 117

Krill User Manual

10.5 Proxy for CLI and API

If you are okay with only using the krillc CLI on the machine where you run your Publication Server, then your safest
option is to not proxy access to the API.

However, if you need to use the CLI or API from other machines, then you should proxy access to the path ‘/api’ to
Krill.

10.6 Configure the Repository

Note: We use the term Publication Server to describe the (Krill) server that CAs will connect to over the RFC 8181
protocol in order to publish their content. We use the term Repository Server to describe a server which makes this
content available to RPKI Validators.

10.6.1 Synchronise Repository Data

To actually serve the published content to Rsync and RRDP clients you will need to run your own repository servers
using tools such as Rsyncd and NGINX.

The Krill Publication Server will write the repository files under the data directory specified in its configuration file:

$DATA_DIR/repo/rsync/current/ Contains the files for Rsync
$DATA_DIR/repo/rrdp/ Contains the files for HTTPS (RRDP)

You can share the contents of these directories with your repository servers in various ways.

Krill Sync

The preferred approach is to synchronise the data written by the Publication Server to your Repository Servers in a
background process. A simple rsync command in crontab would work most of the time, but unfortunately that approach
will lead to regular issues where inconsistent, or incomplete, data will be served to RPKI validators.

However, we have developed a separate tool krill-sync which can be used for this purpose. Krill-sync essentially works
by retrieving consistent RRDP deltas from your back-end Publication Server to ensure that it can write consistent sets
of data to disk for use by your Repository Servers.

Shared Data

Another option is to use some kind of shared file system (NFS, clustered filesystem, network storage) where the Krill
Publication Server can write, and your Repository Servers can read.

If you go down this path, then make sure that the entire $DATA_DIR/repo is on a share. In particular: don’t use a mount
point at $DATA_DIR/repo/rsync/current as this directory is recreated by Krill whenever it publishes new data.

There can be issues with this approach with regards to availability and atomicity of updates to files on disk. The
Krill Publication Server takes care to write files in the right order to avoid issues like Relying Parties retrieving a new
notification.xml file before the snapshot or deltas are available. It will also write new files to temporary files and then
rename them to avoid that partially written files are shown to users. However, dependent on the implementation details
of the shared data these strategies may not work.

118 Chapter 10. Running a Publication Server

https://github.com/NLnetLabs/krill-sync

Krill User Manual

10.6.2 Rsync

The next step is to configure your rsync daemons to expose a ‘module’ for your files. Make sure that the Rsync URI
including the ‘module’ matches the rsync_base in your Krill configuration file. Basic configuration can then be as
simple as:

$ cat /etc/rsyncd.conf
uid = nobody
gid = nogroup
max connections = 50
socket options = SO_KEEPALIVE

[repo]
path = /var/lib/krill/data/repo/rsync/current/
comment = RPKI repository
read only = yes

Note: we recommend that you use a limit for ‘max connections’. Which value works best for you depends on your local
situation, so you may want to monitor and tune this to your needs. Generally speaking though, it is better to limit the
number of connections because RPKI validators will simply try to reconnect, rather then end up in a situation where
your rsync server is unable to handle requests.

10.6.3 RRDP

For RRDP you will need to set up a web server of your choice and ensure that it has a valid TLS certificate. Next, you
can make the files found under, or copied from $DATA_DIR/repo/rrdp available here.

Note: If desired, you can also use a CDN or your own caching infrastructure to reduce load. You could set it up to
serve ‘stale’ content if your back-end system is unavailable to reduce the impact of short outages of your server. If you
cache content make sure that you do not cache the main ‘notification.xml’ file (see more below) for longer than one
minute (unless the back-end is unavailable). Other RRDP files will use unique names and can be cached for as long as
you please.

10.6.4 Initialise Publication Server

You need to initialise your Publication Server using the base URIs as exposed by your Repository Servers. Use the
following command, well, make sure the URIs reflect your setup of course:

Example CLI:

$ krillc pubserver server init --rrdp https://krillrepo.example.com/rrdp/ --rsync rsync:/
→˓/krillrepo.example.com/repo/

There is probably no reason to use the API directly for this initialisation process, except perhaps for automation of test
environments:

$ krillc pubserver server init --rrdp https://krillrepo.example.com/rrdp/ --rsync␣
→˓rsync://krillrepo.example.com/repo/ --api
POST:
https://krill-ui-dev.do.nlnetlabs.nl/api/v1/pubd/init

Headers:
(continues on next page)

10.6. Configure the Repository 119

Krill User Manual

(continued from previous page)

content-type: application/json
Authorization: Bearer secret

Body:
{
"rrdp_base_uri": "https://krillrepo.example.com/rrdp/",
"rsync_jail": "rsync://krillrepo.example.com/repo/"

}

Provided that you also set up your Repository Servers, and that they are in sync, you can now verify that the set up works.
Try to get the ‘notification.xml’ file under your base URI, e.g. https://krillrepo.example.com/rrdp/notification.xml.
Verify that access to your rsync server works by doing:

$ rsync --list-only rsync://krillrepo.example.com/repo/

If you are satisfied that things work, you can proceed to add publishers for your CAs. If not, then this is the moment to
clear your Publication Server instance so that it can be re-initialised:

$ krillc pubserver server clear

Or through the API:

$ krillc pubserver server clear --api
DELETE:
https://localhost:3000/api/v1/pubd/init

Headers:
Authorization: Bearer secret

Note that you can NOT clear a Publication Server instance if it has any active publishers. Those CAs would not be
aware that they would need to use new URIs on their certificates.

If you should end up in this situation, then you could set up a new Publication Server instead, and then migrate your
existing CAs to that server, and then remove your current server altogether. Alternatively, you can remove all publishers
from your server first, then clear and re-inialise it, and then add your CAs again and migrate them to this newly initialised
version.

In short: it is best to avoid this and ensure that your are happy with the URIs used before adding publishers.

10.6.5 Repository Stats

You can review Publication Server stats, including the number of files and space used by publishers.

Example CLI:

$ krillc pubserver server stats
RRDP updated: 2021-04-08T06:40:01.337191+00:00
RRDP session: ec00a09d-45f9-43ff-9e4d-2739f5e05c05
RRDP serial: 29

Publisher, Objects, Size, Last Updated
testbed, 2, 3908, 2021-04-08T07:38:25.106777+00:00
ta, 3, 7592, 2021-04-08T07:38:25.557323+00:00

Example JSON response:

120 Chapter 10. Running a Publication Server

https://krillrepo.example.com/rrdp/notification.xml

Krill User Manual

$ krillc pubserver server stats --format json
{
"publishers": {
"ta": {
"objects": 3,
"size": 7592,
"last_update": "2021-04-08T07:38:25.557323Z"

},
"testbed": {
"objects": 2,
"size": 3908,
"last_update": "2021-04-08T07:38:25.106777Z"

}
},
"session": "ec00a09d-45f9-43ff-9e4d-2739f5e05c05",
"serial": 29,
"last_update": "2021-04-08T06:40:01.337191Z"

}

Example API:

$ krillc pubserver server stats --api
GET:
https://localhost:3000/stats/repo

Headers:
Authorization: Bearer secret

10.7 Manage Publishers

10.7.1 Add a Publisher

In order to add a CA as a publisher you will need to get its RFC 8183 Publisher Request XML. If you had no repository
defined in your CA, you can get this XML from the UI, as described here.

The XML will include a so-called ‘handle’ - essentially the name that the CA likes to use for itself. This handle needs
to be unique on the server side - we can’t have all CAs calling themselves mr-black. For this reason the CLI offers an
optional argument --publisher that allows overriding the handle in the reqeust with a locally unique value - e.g. a
UUID.

After adding a publisher the server will respond with the unique RFC 8183 Repository Response XML for this pub-
lisher. You can also retrieve this response again later (see below).

Example CLI:

$ krillc pubserver publishers add --publisher localname --request ./data/new-ca-
→˓publisher-request.xml
<repository_response xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1"␣
→˓publisher_handle="localname" service_uri="https://localhost:3000/rfc8181/localname/"␣
→˓sia_base="rsync://localhost/repo/localname/" rrdp_notification_uri="https://
→˓localhost:3000/rrdp/notification.xml">
<repository_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg4OEJBMzA2QkMzMUVFRkU3NzRDNzYzRUY1N0VBNUZEQzdBMTlERTI1MB4XDTIxMDMyOTA3NTg0M1oXDTM2MDMyOTA4MDM0M1owMzExMC8GA1UEAxMoODhCQTMwNkJDMzFFRUZFNzc0Qzc2M0VGNTdFQTVGREM3QTE5REUyNTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAORLpfOKS8M2QGBto1OdnDYdrgjxJeF+uU7mJLgqTT3l5NbkOXxgPClUqbbbfp/
→˓c7x5sy3JbmUWaQHtkl6N9l8vcRlQQfhk0vwlVCHcQQrcMViJ5GmGtEjo7+Uf9e0TDA+rrkdqOkpOLcGRKjs1SZNqCRktubQU7Ndc0ICLo6KsQ5VYvw0p6YJcsL33+jcOWsFe6D4dhYlQkw5QHXn5c0Eenvz1SQqE96pcXJ57gmnzO9iVjY9RqPoLWXSRub0pG3Q6x8naOq16uaJZyk8kVjYOayx5umR73fI9iyMG0YOF8H5vy6/
→˓gYAnYssX26kObXan0fD9rgv4aWK0Xzp5hwz1ECAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQUiLowa8Me7+d0x2PvV+pf3HoZ3iUwHwYDVR0jBBgwFoAUiLowa8Me7+d0x2PvV+pf3HoZ3iUwDQYJKoZIhvcNAQELBQADggEBAMtieNiamax1gUeSeGuA72NucPCZIdx2JrTIDhCAjLmPpvnXu1djGSa07YpgLiosnbtMMfsQO2O/
→˓Yz1VkQUTjLn2x7DKwuL9A8+IrYELSth4aCNSgPkhZfDL238MflAxptNRAoIeRGn8l3oSg4AUzBuScErwvBbHWShO66nV0wzVFb+mLvNas3Wd/
→˓GMiZHI/MwGZpj86Q/8wvyyw2C0b0ddWaoXwDyJjuxja0nHPDHVriJ8/
→˓xsOfBk144n1zyP++apQXmXorCy4hs9GPyr+HGeoL6kNydDxdwzJLCqWW7u3wSnxjCJk+hfGq82qNm90ALv5PaOb58fDgWwBwuvTP0AA=
→˓</repository_bpki_ta>

(continues on next page)

10.7. Manage Publishers 121

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

</repository_response>

Note that the API expects the JSON equivalent of the Publisher Request. But if there is demand then we can extend
this in future to also accept the plain XML.

Example API:

$ krillc pubserver publishers add --publisher localname --request ./data/new-ca-
→˓publisher-request.xml --api
POST:
https://localhost:3000/api/v1/pubd/publishers

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"tag": null,
"publisher_handle": "localname",
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc="
}

10.7.2 List Publishers

You can list all current publishers using the following command:

Example CLI:

$ krillc pubserver publishers list
Publishers: testbed, ta

JSON reponse:

$ krillc pubserver publishers list --format json
{
"publishers": [
{
"handle": "testbed"

},
{
"handle": "ta"

}
]

}

122 Chapter 10. Running a Publication Server

Krill User Manual

Example API:

$ krillc pubserver publishers list --api
GET:
https://localhost:3000/api/v1/pubd/publishers

Headers:
Authorization: Bearer secret

10.7.3 List Stale Publishers

You can list all publishers which have not published in a while. This may help to identify 3rd party publishers which
are no longer active.

Example CLI:

$ krillc pubserver publishers stale --seconds 60
Publishers: testbed, ta

Example JSON response:

$ krillc pubserver publishers stale --seconds 60 --format json
{
"publishers": [
{
"handle": "ta"

},
{
"handle": "testbed"

}
]

}

Example API:

$ krillc pubserver publishers stale --seconds 60 --api
GET:
https://localhost:3000/api/v1/pubd/stale/60

Headers:
Authorization: Bearer secret

10.7.4 Show a Publisher

Show details for a publisher, including the files that they published.

Example CLI:

$ krillc pubserver publishers show --publisher testbed
handle: testbed
id: E90C21734C2C370A91A8475CB4F0E75DA4D0F0BF
base uri: rsync://localhost/repo/testbed/
objects:
rsync://localhost/repo/testbed/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.crl
rsync://localhost/repo/testbed/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.mft

10.7. Manage Publishers 123

Krill User Manual

The JSON response also includes the full base64 encoded objects:

{
"handle": "testbed",
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",
"base_uri": "rsync://localhost/repo/testbed/",
"current_files": [
{
"base64":

→˓"MIIJRAYJKoZIhvcNAQcCoIIJNTCCCTECAQMxDTALBglghkgBZQMEAgEwgZsGCyqGSIb3DQEJEAEaoIGLBIGIMIGFAgEJGA8yMDIxMDQwODA2MzUwMFoYDzIwMjEwNDA5MDY0MDAwWgYJYIZIAWUDBAIBMFMwURYsMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwDIQCQzenNsskk3l2aTO31/
→˓Q8DtMdiFbVnO0AEdDZM4plkBKCCBs8wggbLMIIFs6ADAgECAhR4g6/Gg/
→˓M8Ht3YdIxWaF5a54TZ4TANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEygwQkE1QzEzMkI5NDg5MUNCMkQzQTg5RURFMTJGMDFBQ0E0QkNEM0RDMB4XDTIxMDQwODA2MzUwMFoXDTIxMDQxNTA2NDAwMFowggItMYICKTCCAiUGA1UEAxOCAhwzMDgyMDEwQTAyODIwMTAxMDBDODE4QjdGQ0NFMEVDNkNCNDkxMjlFNEMwQjc0RjY2OTI4NTQ2QTEwRDc5NDI1RDIzODhGNTI2NzEzQzkwNkJDRTU1QjM5RjI3RUFEQTA5RDVBQTRFQjVCRjFEN0NBNjQ2OUMwRjJDOTlGRDNFOERCNTBEQUJCNDNDMkQwM0QwRTY2Rjg4NDgwRDlBOUE1OEYyMTcyQUMwNEM3MjVENzgxODMzNUNFNEVERkNBQjkzRjM2NEYwMEVFRTdCNEY0MjlBMTQ0MDNFODgyMkMwNTQyQjNEMDczQkYwRTRENjU3NkVDMTZGNjYzMkU2RDNDMzIyNkRGOEIxMTM5Q0M0MDJBRjgxNjlERTNGQzY4RTFBRjQ5NjEyQjBGNkY0QzU2N0YwQ0Q3NzgwQzdEMjkzMjZBODlBN0E1RUUzNzQxNTIxOUZCOTNDNkFGODYyQjk2RDQyNTYxMUI4MzE0QzhDMjAyRkI5MEE3NTAyRTBCNUMwNUM2MUM3ODVGRkY1OEU0NEUzREJCNkFFOTE0NTE2N0ZDQjFGMzIxQkI1NUZDMDZDQTZEOEI5RUI2MjVERjVGMEVBQjEwNUM2QUI4OUE2NjAzODk5RjNFNkZEQzQ2NEE0MTMyNTAwNkRBMTVCOTk0OTNBMDY0RkM2MEQyNUM2ODlCMzQ3MENFNTc1NDQ3Njg0RjAyMDMwMTAwMDEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDIGLf8zg7Gy0kSnkwLdPZpKFRqENeUJdI4j1JnE8kGvOVbOfJ+raCdWqTrW/
→˓HXymRpwPLJn9Po21Dau0PC0D0OZviEgNmppY8hcqwExyXXgYM1zk7fyrk/
→˓Nk8A7ue09CmhRAPogiwFQrPQc78OTWV27Bb2Yy5tPDIm34sROcxAKvgWneP8aOGvSWErD29MVn8M13gMfSkyaomnpe43QVIZ+5PGr4YrltQlYRuDFMjCAvuQp1AuC1wFxhx4X/
→˓9Y5E49u2rpFFFn/LHzIbtV/AbKbYuetiXfXw6rEFxquJpmA4mfPm/
→˓cRkpBMlAG2hW5lJOgZPxg0lxomzRwzldUR2hPAgMBAAGjggHZMIIB1TAdBgNVHQ4EFgQUhYGH74F3iP2GU+dFg556T4ehi88wHwYDVR0jBBgwFoAUC6XBMrlIkcstOont4S8BrKS809wwDgYDVR0PAQH/
→˓BAQDAgeAMF4GA1UdHwRXMFUwU6BRoE+GTXJzeW5jOi8vbG9jYWxob3N0L3JlcG8vdGVzdGJlZC8wLzBCQTVDMTMyQjk0ODkxQ0IyRDNBODlFREUxMkYwMUFDQTRCQ0QzREMuY3JsMGQGCCsGAQUFBwEBBFgwVjBUBggrBgEFBQcwAoZIcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90YS8wLzBCQTVDMTMyQjk0ODkxQ0IyRDNBODlFREUxMkYwMUFDQTRCQ0QzREMuY2VyMGkGCCsGAQUFBwELBF0wWzBZBggrBgEFBQcwC4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5tZnQwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAhBggrBgEFBQcBBwEB/
→˓wQSMBAwBgQCAAEFADAGBAIAAgUAMBUGCCsGAQUFBwEIAQH/
→˓BAYwBKACBQAwDQYJKoZIhvcNAQELBQADggEBAGEA7uZJ0/
→˓OEo9cifRH5NMm8NETfk2fNIId6PMqjZKJym5j4D3EnuU72FgDuXSQuI/
→˓ncOelq0Y0ABUzCjGYx41UhPYNzBLznw1WXgSDq7DviXx6hm60cpuIP++srMAWPR5yrBuX3WtJhDPmZMkOb9Z5OLs1A1It0Om1n9Sv8KCBzFG7vUjXQkQem90qnVydKp0PszRjq87lQmhJc7glRBnULkx+ydik24LDZw8+EfuYN6j2hL8nuGaREkuAHmmKwEqccSOSR4K80Obp+jHyFoWeM+rU78NrrCnKn6GWgVtIB8+XiTFJL4Pnri8ibMGaj+8aYznch3DJ8zu9T1w2r3SUxggGqMIIBpgIBA4AUhYGH74F3iP2GU+dFg556T4ehi88wCwYJYIZIAWUDBAIBoGswGgYJKoZIhvcNAQkDMQ0GCyqGSIb3DQEJEAEaMBwGCSqGSIb3DQEJBTEPFw0yMTA0MDgwNjQwMDBaMC8GCSqGSIb3DQEJBDEiBCC6KQ0o84Yypkl7r0EKQaJr2g5FLRfGBlMp+vXtvA8RgDANBgkqhkiG9w0BAQEFAASCAQBaN5kzaVRD/
→˓aQHQ+EWYZMP7CFULqVEY8qPMp1GDNUhI83YdGGmbbBNy0hSfY0CJio58v/
→˓aPYRuUEcfBJQL0fi3O6PdFHF5I5hQFKzT6XX+09+UdxmAYd7TRidqIr3mBs5TbLd+e7eWwUdcut/
→˓cUxd9mjWbrCBpHKDADT3KGpe6G4TSO9BFzU51zlKP9bJos7NfpJFyu75G7NyM1ebLD+2U2PImZaAnbyyVlGyXxUd8cmEO/
→˓fweAzYk4eGvjtQIpnXpgtztdCkDE740KmYEn3XaVyNVvOk2oCyzRjkaKIPK70vRZ1HAW6IYSELLUbaFb6oSZJ9OfnVMq3Qragk/
→˓Mo6Z",

"uri": "rsync://localhost/repo/testbed/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.
→˓mft"

},
{
"base64":

→˓"MIICJTCCAQ0CAQEwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQxcNMjEwNDA4MDYzNTAwWhcNMjEwNDA5MDY0MDAwWjB1MCUCFByAJz7D3sHeqKPBfGyff/
→˓biiV6VFw0yMjA0MDYxMTUxMTNaMCUCFGSYKUXTAY0eHzm8+Q1j0UZa4f36Fw0yMjA0MDYxMTUxMzFaMCUCFEU/
→˓b+tRv1ToUuMk3g3kEbEFv2PIFw0yMjA0MDYxMTUxMTZaoC8wLTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAKBgNVHRQEAwIBCTANBgkqhkiG9w0BAQsFAAOCAQEAB8dqSAjJ71YKJ106bSntFqEhHEIJ6wzbFkwe2hJJtbKe8KsM+OWyQPOXG2QJ85sNLPwTctFzNTT1efWUgof1fM9EPM5pi7GbY0EBflkSsX/
→˓qhiDAVWooDuqqUmdZNrSebYiIUOuLnuhARcWXoIOAU2UwalGX1Wbn3wPaQJ/
→˓60PMd5FWEf1JHYp8mUeSWu76E13WEtfDZYszZEGnwyLMt2vEcUauhbzVh4pxf4Yv18PWWqM5xDexc7MjADAwP5Ud8VSjPCs/
→˓Cr5M3fv2hLMLqyiyB47i+5fEewmh2IC3PDpo5rpHd5rV2M//BhJrs58a50MKZha43cT7q7qhhPQXXlg==",

"uri": "rsync://localhost/repo/testbed/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.
→˓crl"

}
(continues on next page)

124 Chapter 10. Running a Publication Server

Krill User Manual

(continued from previous page)

]
}

Example API:

$ krillc pubserver publishers show --publisher testbed --api
GET:
https://localhost:3000/api/v1/pubd/publishers/testbed

Headers:
Authorization: Bearer secret

10.7.5 Remove a Publisher

You can remove a publisher altogether. Doing so will also remove all their current content.

Example CLI:

% krillc pubserver publishers remove --publisher publisher

Example API:

$ krillc pubserver publishers remove --publisher publisher --api
DELETE:
https://localhost:3000/api/v1/pubd/publishers/publisher

Headers:
Authorization: Bearer secret

If you try to remove an unknown publisher, you will get an error:

$ krillc pubserver publishers remove --publisher publisher --format json
Http client error: Status: 404 Not Found, ErrorResponse: {"label":"pub-unknown","msg":
→˓"Unknown publisher 'publisher'","args":{"publisher":"publisher"}}

10.8 Migrate existing Krill CAs

If you have an existing Krill CA that is currently publishing under another publication server, then you can migrate it
to using a new repository.

10.8. Migrate existing Krill CAs 125

Krill User Manual

126 Chapter 10. Running a Publication Server

CHAPTER

ELEVEN

DELEGATE TO CHILD CAS

Krill supports delegating resources from your CA(s) to so-called child CAs. This function is primarily used by National
Internet Registries (NIRs) that use Krill for their RPKI service. Most non-registry organisations will have no need for
this function, as they simply have no members or customers to delegate resources to.

However, this function may still come in useful for example for larger organisations with many resources and complex
organisational structure or customers who are in charge of using some of their IP or ASN resources.

There is no UI support for managing child CAs, but you can use the CLI krillc children subcommands to achieve this:

USAGE:
krillc children [SUBCOMMAND]

SUBCOMMANDS:
add Add a child to a CA
info Show info for a child (id and resources)
update Update an existing child of a CA
response Show the RFC8183 Parent Response XML
connections Show connections stats for children of a CA
suspend Suspend a child CA: hide certificate(s) issued to child
unsuspend Suspend a child CA: republish certificate(s) issued to child
remove Remove an existing child from a CA

127

Krill User Manual

128 Chapter 11. Delegate to Child CAs

CHAPTER

TWELVE

KEY ROLLOVER

Krill supports the RFC 6489 RPKI Certification Authority Key Rollover process. In a nutshell this process allows
RPKI CAs to replace their key in such a way that the content of all ‘objects’, like ROAs and possibly certificates issued
to child CAs, is preserved in re-issued objects under the new key, without noticeable interruptions to RPKI validators.

Before we can dive in to key rollovers we need to take a step back and talk a bit about RPKI CA certificates and keys.

For most users their CA will have only one parent CA and only one key and CA certificate under that parent. But,
krill supports having multiple so-called “Resource Classes” under a parent. The term Resource Class stems from RFC
6492 - essentially you can think of these as a way to to group a set of resources that can appear on a single certificate.
This construct is needed because RPKI CA certificates can have only one signing parent CA certificate. So, if your
parent received resources on different certificate (presumably from different sources), then they cannot sign a single
certificate to you with all those resources. They would have to give you a signed certificate under each of their own
certificates with the applicable resources.

Furthermore, Krill also supports the notion of having multiple parent CAs. Conceptually this is only a small leap
from having to deal with potentially multiple Resource Classes under a single parent. Under the hood it’s all just more
Resource Classes to Krill - it will just remember which parent to talk to in relation to each of them. Each resource class
has its own key, or during a key rollover: keys.

12.1 Quick Guide to Key Rollovers

If you want to understand the background of key rollovers better, then we urge you to read the section below this one.
Here we will just give you the quick gist of it.

If you want to do a key rollover for your CA, you will need to run two CLI commands.

First you need to initialise a new key to start the process:

krillc keyroll init

Then, you should wait 24 hours and before activating the new key and retiring the old:

krillc keyroll activate

Caveats:

• The init command will have no effect if your CA is in the middle of a rollover

• The activate command will have no effect if your CA does not have a new key

Your ROAs and possible other objects, such as CA certificates delegated to child CAs if you have those, will be safe
during a rollover. They will be re-issued under the new key when you run the activate command.

129

https://tools.ietf.org/html/rfc6489.html
https://tools.ietf.org/html/rfc6492.html
https://tools.ietf.org/html/rfc6492.html

Krill User Manual

12.2 Key Life Cycle Background

The key life cycle for a Resource Class has the following possible stages:

• pending

• active

• roll phase 1: pending and active key

• roll phase 2: new and active key

• roll phase 3: active and old key

• Pending

The ‘pending’ state indicates that a parent has told your CA that it is entitled to resources under a Resource Class
hitherto unknown to your CA. When this happens Krill will create a new local Resource Class associated with this
parent with a fresh key pair and a ‘pending’ Certificate Sign Request (CSR).

This stage is usually short-lived, because it immediately triggers that the CSR is sent to the parent. However, it needs
to exist in order for Krill to deal with the possibility that the parent is unreachable or unresponsive to the CSR right
after it was told about this entitlement.

• Active

The ‘active’ state is the normal stable state for keys under a Resource Class. It indicates that Krill has a single key
under a resource class and it has received a certificate for it from its parent.

Krill will continue to query the parent for entitlements and in case there is a change in eligible resources or certificate
validity it will create a CSR which is sent to the parent. The key as such remains in the ‘active’ state even if there are
pending CSRs.

At this point we should probably also mention that if a Resource Class no longer appears in a parent’s RFC 6492 list
response, Krill will simply clean up the lost resource class and all its (one or more) keys in whatever state they happen
to be, and withdraw any objects published.

• roll phase 1: pending and active key

This state indicates that key rollover was initiated for a Resource Class. This can only be done for Resource Classes
that are in an ‘active’ state. In other words: if your Resource Class is in the middle of a key rollover, then that has to be
finished before you can initialise a new rollover.

You can use the following CLI command to start this process for all your eligible Resource Classes:

krillc keyroll init

When your Resource Class enters this stage, it will generate a new key and corresponding CSR. This phase is normally
short-lived, because as above Krill will immediately send the CSR(s) to the appropriate parent(s).

• roll phase 2: new and active key

This state indicates that we received a new certificate for the ‘new’ key in the Resource Class. In conformance with
RFC 6489 Krill will now start publishing a CRL and manifest for this key, but it will continue to publish all of its
objects such as ROAs under the previous, still ‘active’ key.

You can check whether your CA has reached this stage by running krillc show. This will print a section for each of
your Resource Classes with their current ‘state’. For example:

Resource Class: 0
Parent: testbed
State: roll phase 2: new and active key Resources:

(continues on next page)

130 Chapter 12. Key Rollover

https://tools.ietf.org/html/rfc6492.html
https://tools.ietf.org/html/rfc6489.html

Krill User Manual

(continued from previous page)

ASNs:
IPv4: 192.168.0.0/16
IPv6:

• roll phase 3: active and old key

You can complete your key rollover for any Resource Class that is currently in phase 2 by issuing the following CLI
command:

krillc keyroll activate

Note that according to RFC 6489 you should wait at least 24 hours before initiating this step.

This stage will trigger that the ‘new’ key is activated. All objects, like ROAs, which were issued under the previous
‘active’ key will now be published under that new key. Furthermore Krill will generate a revocation revocation request
for the previous active key. But, until it is indeed confirmed to be revoked by the parent Krill will continue to issue a
CRL and manifest, but no other objects for it.

This stage should be short-lived. The revocation request is sent to the parent immediately. But it exists in order to
deal with a possible failure to communicate with the parent when the revocation request is sent. In that case Krill will
continue to try in the background. As soon as the old key is revoked Krill will remove it. After this has been done there
is only one key again, and it’s ‘active’.

12.2. Key Life Cycle Background 131

https://tools.ietf.org/html/rfc6489.html

Krill User Manual

132 Chapter 12. Key Rollover

CHAPTER

THIRTEEN

MIGRATE TO A NEW REPOSITORY

There may be times when you need to migrate your CA(s) to a new Repository. For example, you may want to do this
if you were running your own Publication Server to provide a Repository, but you can now use a service provided by
another organisation, e.g. your RIR. Another reason may be that you are running your own server, but you decided that
you need to change your server setup.

Whatever your reason may be Krill supports migration to a new Repository by doing a specialised key rollover. Essen-
tially it will allow you to configure a new Publication Server for your CA, at which point your CA will create a new
key that will use the new server, and the base URIs it got from that server. Then you need to complete the key rollover
(activate the new key), to remove the old key and the dependency on the old server.

There is no web UI support for this (yet), but you can do this using the CLI.

First, get the so-called RFC 8183 Publisher Request XML for your CA:

krillc repo request

Then provide this XML to your new Publication Server (e.g. through a web portal). They should return an RFC 8183
Repository Response XML file. Configure your CA to use this by running:

krillc repo configure --response </path/to/repo-response.xml>

Note: Krill will verify that it can successfully connect to the new server and perform an RFC 8181 ‘list’ query to see
its currently published objects, before accepting it. If this query fails you will get an error message and nothing will
change for your CA.

As with normal key rollovers RFC 6489 demands that you wait 24 hours before activating the new key, and removing
the old one. However, there may be reasons why you need to move more quickly. In particular, if your old Publication
Server or its Repository is unreachable. Run the following command to complete the process when you are ready:

krillc keyroll activate

Note: Krill will try to remove objects published at the old repository on completion of this process. This is a best
effort attempt. If the old server is unresponsive, which may well have been the reason for migration, then it will not try
again. Furthermore, while RFC 8181 supports that a CA asks to withdraw all objects, it does not support that a CA
informs a server that they no longer wish to be publish with them ever. I.e. it would be polite if you told your server to
remove your CA as a publisher through another channel.

Note: There is no way to cancel the migration once it has been initiated. You will need to complete it, but then you
can migrate again. Furthermore, because this relies on the key rollover process you cannot do this migration if there is
a key rollover in progress. Krill will check for this, and refuse to do the repository migration in this case.

133

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8181.html
https://tools.ietf.org/html/rfc6489.html
https://tools.ietf.org/html/rfc8181.html

Krill User Manual

134 Chapter 13. Migrate to a new Repository

CHAPTER

FOURTEEN

HARDWARE SECURITY MODULES

14.1 Overview

Krill uses OpenSSL by default for key generation, and it stores the private keys thus generated in the keys directory
under its data directory. For many organisations this will be good enough, provided of course that they ensure that
access to the server and backup data is restricted.

If you want to take security one (big) step up, then you may want to use a Hardware Security Module (HSM) instead.
HSMs are devices that can be used to safeguard and manage digital keys. They are designed to allow applications to
use private keys, whilst ensuring that the actual private keys are never leaked outside of the device - not even to the
application that is using the key.

However, be aware that your existing keys cannot (easily) be imported into your HSM. One could also argue that if a
key had not been generated inside the actual HSM importing it will not increase security significantly, because there is
no way of knowing for sure that the key was never leaked.

So, in order to use HSMs on an existing Krill installation you will have to perform a key rollover. This will ensure that
the keys used for your RPKI CA certificates will use the HSM. But, unfortunately, there is no standards supported way
to perform a key rollover for the identity key that Krill uses for its communication with parent (and child) CAs and its
Publication Server. We are planning to work on a solution for this and will reach out to the IETF to seek standardisation.

14.2 Integrating with an HSM

Krill uses what it calls a “signer” to create and manage keys and to sign data with them. For the most part the Krill
CA code is unaware of which signer implementation is associated with a key. For long-lived key-pairs such as the keys
used in RPKI CA certificates (the resource certificate signed by the parent) and the ID certifcate used in the RFC 6492
(provisioning) and RFC 8181 (publication) protocols, it will only keep track of the public key identifier.

It falls to the “signer” then to map these public key identifier to an actual private key that can be used for signing
operations. As mentioned, the default signer uses OpenSSL, in which case the actual private keys are simply stored on
disk in the keys sub-directory of Krill data directory.

If you have access to a Hardware Security Module (HSM) you can instead configure “signer” implementations which
will use the HSM to create and safeguard the private keys and perform any signing operation inside the HSM.

Note: Krill uses one-off signing keys for the EE certificates used in RPKI Signed Objects (such as ROAs and Mani-
fests). These keys are generated whenever such an object is created, and used only once for signing, and then they are
destroyed.

Such keys will NOT be created with, stored in or signed with the HSM. This is because it can be slow to generate, sign
with and destroy one-off signing keys using an HSM.

135

https://tools.ietf.org/html/rfc6492.html
https://tools.ietf.org/html/rfc8181.html

Krill User Manual

On the other hand, because thes one-off keys are immediately destroyed, they do not need to be protected to the same
degree as RPKI CA private keys, or CA identity keys. Assuming that the OpenSSL generation of a 2048 bit RSA key
pair is secure enough.

14.3 Compatible HSMs

In theory Krill supports any HSM that is compatible with the PKCS#11 and/or the KMIP 1.2 standards. The HSM
must already be setup and you must already be in possession of any access credentials which Krill will need to use to
connect to the HSM.

Krill has been tested with the following (in alphabetical order):

Cryptographic Token Name Tested Protocols Tested Token Form Test Results
AWS CloudHSM PKCS#11 Cloud Service #556
Kryptus kNET HSM v1.25.0 PKCS#11 & KMIP Cloud Service #554, #565
PyKMIP v0.10.0 KMIP Software #564
SoftHSMv2 v2.6.1 PKCS#11 Software #553
Utimaco Security Server v4.45.3 PKCS#11 Software Simulator #732
YubiHSM 2 PKCS#11 USB key #555

In order to work with Krill the HSM must support the following operations:

PKCS#11 KMIP
C_CloseSession Activate
C_DeleteObject Create Key Pair
C_Finalize Destroy
C_FindObjects Get
C_FindObjectsFinal Modify Attribute
C_FindObjectsInit Query
C_GenerateKeyPair Revoke
C_GetAttributeValue Sign
C_GetInfo
C_GetSlotInfo
C_GetSlotList
C_GetTokenInfo
C_Initialize
C_Login
C_OpenSession
C_Sign
C_SignInit

Krill can use a cluster of HSMs if the cluster appears to Krill as a single HSM, i.e. if Krill is not aware that the “single”
HSM is in fact a cluster of HSMs.

136 Chapter 14. Hardware Security Modules

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
https://aws.amazon.com/cloudhsm/
https://github.com/NLnetLabs/krill/issues/556
https://www.kryptus.com/knet/
https://github.com/NLnetLabs/krill/issues/554
https://github.com/NLnetLabs/krill/issues/565
https://github.com/OpenKMIP/PyKMIP
https://github.com/NLnetLabs/krill/issues/564
https://github.com/opendnssec/SoftHSMv2
https://github.com/NLnetLabs/krill/issues/553
https://www.utimaco.com/products/categories/general-purpose-solutions/securityserver
https://github.com/NLnetLabs/krill/issues/732
https://www.yubico.com/products/hardware-security-module/
https://github.com/NLnetLabs/krill/issues/555

Krill User Manual

14.3.1 PKCS#11 or KMIP?

PKCS#11 and KMIP are very similar in the capabilities they provide, so much so that there are commercial offerings
that can bridge from one to the other, HSMs may offer support for both and both standards are maintained by OASIS.
From a Krill server operation perspective however they are very different and each has its own pros and cons.

PKCS#11 works by delegating configuration, logging, administration, maintenance and upgrade of the interface with
the HSM to a library file outside of Krill that Krill loads when it runs. You therefore have to manage and monitor
this library and its logs as a separate component on the system running Krill. However, as a separate component it
can connect in any way it needs to the backend which can be local or remote, or possibly even to a cluster of systems.
Krill sees only the library, it has no way of knowing whether the backend is local or remote, singular or clustered. This
means it also has no way of controlling how long the library will block to wait for a task to complete or how many
requests it can handle at once or how many system resources it uses.

KMIP is arguably simpler to setup. With KMIP you only need to manage Krill and the HSM, there is no additional
library component to manage as with PKCS#11. Krill itself communicates directly with the HSM and so all configu-
ration, logging and resource usage is determined by Krill. In addition, monitoring is done by monitoring Krill itself.
Krill connects to the KMIP server via TLS encrypted TCP and thus could also potentially be routed to one of many
backend servers in a cluster, or the server could be a process running locally on the same host such as PyKMIP.

14.4 Scenarios

14.4.1 Fresh installation

With a fresh installation of Krill you can use the HSM from the start. No keys will be stored locally, instead all long-lived
keys will be stored in the HSM.

14.4.2 Migrating to or between HSMs

Krill does not support migration of existing RPKI CA private keys from one signer to another. Instead you will need
to perform a key rollover for each CA.

Note: Not all keys can be rolled. See the warning above about migration of ID keys used in parent/child and
CA/publication server relationships.

To perform a key roll from one signer to another you must first change the default_signer in krill.conf to the new
signer, and then restart Krill. After this point any new keys that are created by Krill, including the new key resulting
from a rollover, will be created in using the new default_signer.

14.5 Configuration

See krill.conf for full details.

Note: Any changes to the configuration file will not take effect until Krill is restarted.

For backward compatibility if no [[signers]] sections exist in krill.conf then Krill will use the default OpenSSL
signer for all signing related operations. To use a signer other than the default you must add one or more [[signers]]
sections to your krill.conf file, one for each signer that you wish to define.

14.4. Scenarios 137

https://www.oasis-open.org/

Krill User Manual

All signers must have a type and a name and properties specific to the type of signer.

The default configuration is equivalent to addding the following in krill.conf:

[[signers]]
type = "OpenSSL"
name = "Default OpenSSL signer"

14.5.1 Signer Roles

When configuring more than one signer, one may be designated the default_signer and another (or the same one)
may be designated the one_off_signer. The default_signer is used to create all new keys, except in the case of
one-off signing for which the one_off_signer signer will be used to create a new temporary key, sign with it then
destroy it.

Specifying the default_signer and one_off_signer is done by referencing the name of the signer. For example
the above is equivalent to:

default_signer = "Default OpenSSL signer"
one_off_signer = "Default OpenSSL signer"

[[signers]]
type = "OpenSSL"
name = "Default OpenSSL signer"

When only a single signer is defined it will implicitly be the default_signer. When defining more than one signer
the default_signer must be set explicitly.

If the default_signer is not of type OpenSSL and is not explicitly set as the one_off_signer, an OpenSSL signer
will automatically be used as the one_off_signer.

14.5.2 Configuring a PKCS#11 signer

Note: To actually use a PKCS#11 based signer you must first set it up according to the vendor’s instructions. This may
require creating additional configuration files outside of Krill, setting passwords, provisioning users, exporting shell
environment variables for use by the library while running as part of the Krill process, creating or determining a slot
ID or label, etc.

For a PKCS#11 signer you must specify the path to the dynamic library file for the HSM that was supplied by the HSM
provider and a slot ID or label, and if needed, a user pin.

[[signers]]
type = "PKCS#11"
name = "SoftHSMv2 via PKCS#11"
lib_path = "/usr/local/lib/softhsm/libsofthsm2.so"
slot = 0x12a9f8f7
user_pin = "xxxx" # optional
login = true # optional, default = true

Note:

• If using a slot label rather than ID you can supply the label using slot = "my label".

138 Chapter 14. Hardware Security Modules

Krill User Manual

• You can also supply an integer slot ID, e.g. slot = 123456.

• If your HSM does not require you to login you can set login = false.

• If your HSM requires you to supply a pin via an external key pad you can omit the user_pin setting.

14.5.3 Configuring a KMIP signer

Note: To actually use a KMIP based signer you must first set it up according to the vendors instructions. This may
require setting up users and passwords and/or obtaining certificates in order to populate the associated settings in the
krill.conf file.

For a KMIP signer you must specify the fully-qualified domain name (FQDN) or IP address of the host, and optionally
other connection details such as port number, client certificate, server CA certificate, username and password.

[[signers]]
type = "KMIP"
name = "Kryptus via KMIP"
host = "my.hsm.example.com"
port = 5696 # optional, default = 5696
server_ca_cert_path = "/path/to/some/ca.pem" # optional
client_cert_path = "/path/to/some/cert.pem" # optional
client_cert_private_key_path = "/path/to/some/key.pem" # optional
username = "user1" # optional
password = "xxxxxx" # optional
insecure = false # optional
force = false # optional

Note:

• host can also be an IP address.

• insecure will disable verification of any certificate presented by the server.

• force should only be used if the HSM fails to advertize support for a feature that Krill requires but actually
the HSM does support the feature.

14.6 Signer Lifecycle

At startup Krill will announce the configured signers in its logs but will not yet attempt to connect to them. Only once
a signing related operation needs to be performed will Krill attempt to connect to the signer.

If there is a problem connecting to a signer Krill will retry, unless the problem is fatal such as the signer lacking support
for required operations. A problem with a signer will not stop Krill from running and continuing to serve the UI and
API or from executing background tasks. Thus if some keys are owned by one signer that is reachable and another
signer is not reachable, Krill will continue to operate correctly for operations involving the reachable signer.

On initial connection to a new signer Krill will create a “signer identity key” in the HSM. This serves to verify that the
signer is able to create and sign with keys and in future that the signer is the one that owns keys attributed to it.

New keys are created by the default_signer unless they are one-off keys in which case they are created by the
one_off_signer. Signing with a key is handled by the signer that possesses the key.

14.6. Signer Lifecycle 139

Krill User Manual

Note: Krill determines the signer that possesses a key by consulting a mapping that it keeps from key identifier to a
Krill internal signer ID and associated metadata.

On initial connection to a signer it “binds” the internal representation of the connected signer to the matching internal
signer ID and updates the metadata about the signer. It verifies that the internal signer ID corresponds to the backend
by verifying the existence of a previously created “signer identity key” within the backend and that the backend is able
to correctly sign with that key.

Krill is able to maintain the mapping between keys associated with a signer ID and the actual connected signer even if
the name and server connection details in krill.conf are changed so you are free to rename the signer or replace the
physical server by a (synchronized) spare or upgrade or change its IP address or the credentials used to access it and
Krill will still know when connecting to it which keys it possesses.

Warning: If Krill is not configured to connect to the signer that possesses a key that Krill needs to sign with, or
is unable to connect to it using the configured settings, then Krill will be unable to sign with that key!

One particular scenario to watch out for is when reconfiguring an existing Krill instance to use an HSM when that
Krill instance already has at least one CA (and thus already created at least one key pair using OpenSSL).

In this scenario, if the changes to krill.conf to use the HSM define only the one signer (the HSM) and do NOT
set that signer as the one_off_signer, then Krill will activate the default OpenSSL signer for one-off key signing
and will use it to find the previously created OpenSSL keys.

If however the one and only HSM signer is also set as the one_off_signer then Krill will not activate the OpenSSL
signer and so will not find the previously created OpenSSL keys. In this case you must explicitly add a [[signers]]
block of type = "OpenSSL" with default settings thereby causing Krill to activate the default OpenSSL signer.

14.7 SoftHSMv2 Example

Let’s see how to setup SoftHSMv2 with Krill. This example uses commands suitable for an Ubuntu operating system,
for other operating systems you may need to use slightly different commands.

First, install and setup SoftHSM v2:

$ sudo apt install -y softhsm2
$ softhsm2-util --init-token --slot 0 --label "My token 1" --so-pin 1234 --pin 5678

Next add the following to your krill.conf file:

[[signers]]
type = "PKCS#11"
name = "SoftHSMv2"
lib_path = "/usr/lib/softhsm/libsofthsm2.so"
slot = "My token 1"
user_pin = 5678

Now (re)start Krill.

That’s it! When you next create a CA Krill will create a key pair for it in SoftHSMv2 instead of using OpenSSL.

One way to inspect the keys stored inside OpenSSL is using the pkcs11-tool command:

140 Chapter 14. Hardware Security Modules

https://github.com/opendnssec/SoftHSMv2

Krill User Manual

$ sudo apt install -y opensc
$ pkcs11-tool --module /usr/lib/softhsm/libsofthsm2.so -O -p 5678
Using slot 0 with a present token (0x542bc831)
Public Key Object; RSA 2048 bits
label: Krill
ID: e83e96883ee73e69e0e57d54b6726c9d45f788c5
Usage: verify
Access: local

Public Key Object; RSA 2048 bits
label: Krill
ID: 9ecd3796786c7a073d5384c155d8d475d103df74
Usage: verify
Access: local

...

14.8 Configuration Reference

The following configuration file description should give you all the pointers you need to get this setup working:

##
#
----==== SIGNER CONFIGURATION ====----
#
The settings below can be used to configure the signer used by Krill.
#
##

Signers

#
A signer is a cryptographic token, either hardware or software, local or remote,
that can create RSA public/private key pairs and can sign data with the private key.
#
Supported signer types

#
Krill supports three types of signer:
#
- OpenSSL based: Uses the OpenSSL library installed on the host O/S. On older
operating systems it might be that a newer version of OpenSSL than is supported
by the host O/S has been compiled into Krill itself and will be used instead.
#
- PKCS#11 based: Uses a PKCS#11 v2.20 conformant library file from the filesystem.
How the library handles the requests on behalf of Krill is library specific. A
library such as SoftHSMv2 contains all of the code needed to handle the request
and stores generated keys on the host filesystem. Libraries provided by well
known HSM vendors will dispatch requests to one or a cluster of hardware
security modules connected either physically or by network connection to the
host on which Krill is running.
#
- KMIP based: Makes TLS encrypted TCP connections to an operator specified server

(continues on next page)

14.8. Configuration Reference 141

Krill User Manual

(continued from previous page)

running a KMIP v1.2 conformant service.
#
Key creation policy

#
Krill creates keys at different times for different purposes. Some keys are fixed
such as the identity key for the RFC 8183 defined provisioning protocol, others can
be rolled (e.g. the keys used for RPKI CA certificates in resource classes) and
still others are one-off keys (e.g. keys used for EE certificates in CMS) that are
discarded after use.
#
Signer roles

#
Signers can be assigned to roles to implement the desired policy. Roles are assigned
by setting the following top level configuration file settings:
#
- default_signer: The signer will be used to generate new long-term key pairs.
Only one signer may be designated as the default. If only one signer is defined
it will be the default. If more than one signer is defined one must be
explicitly set as the default.
#
- one_off_signer: The signer will be used to generate, sign with and destroy
one-off key pairs. Only one signer may be designated as the oneoff signer. When
not specified an OpenSSL signer will be used for this.
#
These settings must be set to the name of a single signer, e.g.:
#
default_signer = "My signer"
#
[[signers]]
type = "OpenSSL"
name = "My signer"
#
Required capabiliites

#
When Krill first connects to a new signer it will verify that the signer meets its
requirements. In particular it will require the signer to generate an RSA key pair
and to demonstrate that it can sign data correctly using the generated private key.
#
Config file settings

#
At a minimum the "name" and "type" must be specified for a signer.
#
One optional setting can also be set for all signers:
#
- signer_probe_retry_seconds: When initially connecting to the signer on first use
after Krill startup, wait at least N seconds between attempts to connect and
test the signer for compatibility with Krill. Defaults to 30 seconds.
#

(continues on next page)

142 Chapter 14. Hardware Security Modules

Krill User Manual

(continued from previous page)

The remaining details that must be supplied to configure a signer vary by signer
type and by specific implementation. For example an OpenSSL signer doesn't require
a path to a library file to load, while a PKCS#11 signer does, and one PKCS#11
vendor may require login by PIN code while another might allow operations to be
performed with external PIN entry or no PIN entry at all.
#
Default configuration

#
The default configuration is equivalent to:
#
[[signers]]
type = "OpenSSL"
name = "Default OpenSSL signer"
#
Changing the configuration

#
The number, type, order, settings, names of signers can be changed at any time.
Krill will apply the changes when next restarted. Via the use of identity key
based signer binding Krill will still find the keys that it has created as long as
the same backend is connected to, irrespective of name or connection details, and
that the identity key in the signer has not been deleted.
#
Warning about removing an in-use signer

#
Removing a signer that owns keys that Krill is still using will prevent Krill from
accessing those keys!
#
Example configuration

#
Below is an example configuration. This example defines many signers but normally
one would define only a single signer, or two signers if migrating from one signer
to another.
#
default_signer = "SoftHSMv2 via PKCS#11"
#
[[signers]]
type = "OpenSSL"
name = "Signer 1"
#
[[signers]]
type = "OpenSSL"
name = "Signer 2"
keys_path = "/tmp/keys"
#
[[signers]]
type = "PKCS#11"
name = "Kryptus via PKCS#11"
lib_path = "/usr/local/lib/kryptus/libknetpkcs11_64/libkNETPKCS11.so"

(continues on next page)

14.8. Configuration Reference 143

Krill User Manual

(continued from previous page)

user_pin = "xxxxxx"
slot = 313129207
#
[[signers]]
type = "PKCS#11"
name = "SoftHSMv2 via PKCS#11"
lib_path = "/usr/local/lib/softhsm/libsofthsm2.so"
user_pin = "xxxx"
slot = 0x12a9f8f7
#
[[signers]]
type = "KMIP"
name = "Kryptus via KMIP"
host = "my.hsm.example.com"
port = 5696
server_ca_cert_path = "/path/to/some/ca.pem"
username = "user1"
password = "xxxxxx"

OpenSSL signer configuration

#
This signer uses the operating system provided OpenSSL library (or on older
operating systems it may use a modern version of the OpenSSL library compiled into
Krill itself) to generate keys, to sign data using them and to generate random
values. Keys are persisted as files on disk in a dedicated directory.
#
Key Value Type Default Req'd Description
==
keys_path path string "$datadir/keys" No The directory in which key files
should be created.
#

PKCS#11 signer configuration
#
Krill interacts with a PKCS#11 v2.20 compatible cryptographic device via the Cryptoki
interface which involves loading a library file from disk at runtime to which all
cryptographic operations will be delegated. The library will in turn communicate
with the actual cryptographic device.
#
Note: The PKCS#11 library is not part of Krill nor is it supplied with Krill. Please
consult the documentation for your PKCS#11 compatible cryptographic device to learn
where you can find the .so library file and how to set up and configure it. For
example when using SoftHSMv2 the library is commonly available at filesystem path
/usr/lib/softhsm/libsofthsm2.so.
#
Key Value Type Default Req'd Description
==
lib_path path string None Yes The path to the .so dynamic library
file to load.

(continues on next page)

144 Chapter 14. Hardware Security Modules

Krill User Manual

(continued from previous page)

slot integer or None Yes An integer PKCS#11 "slot" ID or a
string string "slot" label. Can also be
given in hexadecimal, e.g. 0x12AB.
When a label is given Krill will
inspect all available slots and use
the first slot whose label matches.
--
user_pin string None No The pin or password or secret value
used to authenticate with the
PKCS#11 provider. The format varies
by provider, SoftHSMv2 uses numeric
PINs such as "12345" while AWS
CloudHSM expects this to be in the
form "username:password".
login boolean True No Whether the signer must be logged in
to before performing other
operations.
--
retry_seconds integer 2 No Wait N seconds before retrying a
failed request.
backoff_multiplier float 1.5 No How much longer to wait before retry
N+1 compared to retry N.
max_retry_seconds integer 30 No Stop retrying after N seconds.

KMIP signer configuration
#
Krill interacts with a KMIP v1.2 compatible cryptographic device via the TCP+TTLV
protocol. This requires knowing the hostname, port number, and details required to
authenticate with the provider.
#
Key Value Type Default Req'd Description
==
host string None Yes The domain name or IP address to
connect to.
port integer 5696 No The port number to connect to.
--
insecure boolean false No If true, do not verify the servers
TLS certificate.
force boolean false No If true, ignore server claims that
it lacks functionality that we
require. For example PyKMIP 0.10.0
says it doesn't support operation
ModifyAttribute but sending a
modify attribute request succeeds.
--
server_cert_path File system paths to certificate
string None No files (in PEM format) for verifying
server_ca_cert_path the identity of the server.
string None No
--
client_cert_path File system paths to certificate and

(continues on next page)

14.8. Configuration Reference 145

Krill User Manual

(continued from previous page)

string None No key files (in PEM format) for
client_cert_private_key_path proving our identity to the server.
string None No
--
username string None No Credentials for authenticating with
password string None No the server.
--
retry_seconds integer 2 No Wait N seconds before retrying a
failed request.
backoff_multiplier float 1.5 No How much longer to wait before retry
N+1 compared to retry N.
max_retry_seconds integer 30 No Stop retrying after N seconds.
--
connect_timeout_seconds Wait at most N seconds to make a TCP
integer 5 No connection to the KMIP server.
read_timeout_seconds Wait at most N seconds for more
integer 5 No response bytes to be received from
the KMIP server.
write_timeout_seconds Wait at most N seconds to write more
integer 5 No request bytes to the connection to
the KMIP server.
max_use_seconds integer 60*30 No Don't use an idle connection to the
KMIP server if it has been connected
for at least N seconds.
max_idle_seconds integer 60*10 No Close open connections to the KMIP
server if not used in the last N
seconds.
--
max_connections integer 5 No The maximum number of concurrent
connections to permit to the server.
max_response_bytes integer 64*1024 No The maximum number of response bytes
to accept from the KMIP server, or
otherwise treat the request as
failed.

146 Chapter 14. Hardware Security Modules

CHAPTER

FIFTEEN

MANAGE BGPSEC ROUTER CERTIFICATES

Krill supports signing RFC 8209 BGPSec Router Certificates as of release 0.10.0. These certificates are used publish
the router keys for RFC 8205 BGPSec protocol capable routers. Unfortunately, this protocol is not (yet) supported
by many routers. We hope that by adding support for signing router certificates to the Krill CLI and API we can help
support the future development and deployment of BGPSec. However, because BGPSec deployment is still lacking we
have chosen not to support this in the UI at this time. But, of course, we are more than willing to add this in future if
BGPSec deployment takes off and / or there is user demand for this.

The CLI commands are documented here.

147

https://tools.ietf.org/html/rfc8209.html
https://tools.ietf.org/html/rfc8205.html

Krill User Manual

148 Chapter 15. Manage BGPSec Router Certificates

CHAPTER

SIXTEEN

MANAGE ASPA OBJECTS

Important: This is an EXPERIMENTAL feature to support the discussion and development of the ASPA concept
which is currently being discussed in the sidrops WG in the IETF. Do NOT use this in production environments.

To use this feature you will need to enable support for it when building the CLI. No UI support has been added yet.

16.1 Install CLI

You will need to install Krill from source and enable ASPA to ensure that the CLI binary gets built with additional
subcommands needed for this feature:

cargo install krill --git https://github.com/NLnetLabs/krill \
--tag v0.10.0 \
--features aspa \
--locked

16.2 ASPA Configurations

As with ROA support, Krill lets operators define the ASPA configurations for which they want to have ASPA objects.
The actual ASPA objects are then created by Krill under any parent where the ‘customer AS’ is in the set of received
resources. I.e. if theoretically your CA would receive this same ASN under two different parents, then Krill would
create an ASPA object with the same content under each.

Furthermore, just like with ROAs, Krill issues these objects with a default validity time of 52 weeks, and will automat-
ically re-issue these objects 4 weeks before they would expire - as long as a configuration still exists and the customer
ASN is held by your CA.

149

Krill User Manual

16.3 ASPA Configuration Notation

ASPA objects allow operators to specify a list of provider ASNs, in the sense of BGP rather than in terms of business
relations, where their own ‘customer’ ASN can send updates. Providers can optionally be restricted to IPv4 or IPv6
only.

Krill uses the following notation style to make it easy to define such configurations when using the CLI:

AS65000 => AS65001, AS65002(v4), AS65003(v6)
AS65001 => <none>

Important: You can only have ONE ASPA configuration for each customer ASN. This is because Krill MUST (RFC)
create a single ASPA object, for all provider ASNs. If you wish to have an explicit empty list of provider ASN, use
‘<none>’.

16.4 Add an ASPA

You can add ASPA definition using the following command:

$ krillc aspas add --aspa "AS65000 => AS65001, AS65002(v4), AS65003(v6)"

This uses the following API call:

16.5 List ASPAs

CLI:

$ krillc aspas list
AS65000 => AS65001, AS65002(v4), AS65003(v6)

API:

GET:
https://localhost:3000/api/v1/cas/ca/aspas

Headers:
Authorization: Bearer secret

JSON response:

$ krillc aspas list --format json
[
{
"customer": "AS65000",
"providers": [
"AS65001",
"AS65002(v4)",
"AS65003(v6)"

]
(continues on next page)

150 Chapter 16. Manage ASPA Objects

Krill User Manual

(continued from previous page)

}
]

16.6 Update an ASPA

You can add or remove providers to/from the ASPA configuration for one of your customer ASNs:

Using the CLI:

$ krillc aspas update --customer AS65000 --add "AS65005" --remove "AS65001"

Or using the API:

krillc aspas update --customer AS65000 --add "AS65005" --remove "AS65001" --api
POST:
https://localhost:3000/api/v1/cas/ca/aspas/as/AS65000

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"added": [
"AS65005"

],
"removed": [
"AS65001"

]
}

16.7 Remove an ASPA

You can remove the ASPA configuration for a given customer ASN.

Using the CLI:

$ krillc aspas remove --customer AS65000

Or using the API:

krillc aspas remove --customer AS65000 --api
POST:
https://localhost:3000/api/v1/cas/ca/aspas

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"add_or_replace": [],
"remove": [

(continues on next page)

16.6. Update an ASPA 151

Krill User Manual

(continued from previous page)

"AS65000"
]

}

152 Chapter 16. Manage ASPA Objects

CHAPTER

SEVENTEEN

RUNNING A KRILL TEST ENVIRONMENT

You do not need to run your own Krill Test Environment if you just want to try out Krill. You can simply install
Krill on a test machine and set it up under the public Krill based RPKI testbed that NLnet Labs runs here: https:
//testbed.krill.cloud/index.html#/testbed

Read more about this in our blog.

But of course, you are perfectly welcome to run your own Test environment as well. That way you have total control
over your test environment. This may be particularly useful for training purposes, and for testing code integration using
the API or the RFC 8181 Publication Protocol or RFC 6492 Provisioning Protocol.

Here we will document how we set up a simple testbed. This is not a strict guide. You may want to do things differently
and that would be fine, but we hope that this provides a useful walkthrough.

17.1 Install a Proxy Server

Here we use NGINX, but of course you can use an alternative if you prefer:

apt install nginx
cd /etc/nginx/sites-enabled
rm default

Then we created a configuration file that will proxy all traffic to our Krill server (which we will install in a moment):

/etc/nginx/sites-enabled/krill.example.org

server {
server_name krill.example.org;
client_max_body_size 100M;

location / {
proxy_pass https://localhost:3000/;

}

listen 80;
}

Restart nginx and we have our proxy server set up:

systemctl restart nginx

153

https://testbed.krill.cloud/index.html#/testbed
https://testbed.krill.cloud/index.html#/testbed
https://blog.nlnetlabs.nl/testing-the-waters-with-krill/

Krill User Manual

17.2 Set up Letsencrypt

This is as easy as installing the certbot and running its interactive script to setup integration with NGINX:

apt install certbot
apt install python3-certbot-nginx
certbot --nginx

17.3 Install Krill

We use our debian package to install Krill on a test system:

echo "deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ focal main" >> /etc/
→˓apt/sources.list
apt-get update
apt-get install krill

You can read more about Krill installation options here.

17.4 Configure Testbed

Before you start Krill edit /etc/krill.conf. Make sure that you are okay with the autogenerated random value for
auth_token, or override it with something to your liking.

If you need your testbed to be accessible from other CAs, either for publication or to be added as a child under the
‘testbed’ CA, then make sure that you set the following directive to use the public URI for your proxy server:

service_uri = "https://krill.example.org/"

Add the following section to your config and change the values to your machine’s hostname.

[testbed]
RRDP BASE URI
#
Set the base RRDP uri for the testbed repository server.
#
It is highly recommended to use a proxy in front of Krill.
#
To expose the RRDP files you can actually proxy back to your testbed
krill server (https://<yourkrill>/rrdp/), or you can expose the
files as they are written to disk ($data_dir/repo/rrdp/)
#
Set the following value to *your* public proxy hostname and path.
rrdp_base_uri = "https://krill.example.org/rrdp/"

RSYNC BASE URI
#
Set the base rsync URI (jail) for the testbed repository server.
#
Make sure that you have an rsyncd running and a module which is

(continues on next page)

154 Chapter 17. Running a Krill Test Environment

https://rpki.readthedocs.io/en/latest/krill/install-and-run.html#installing-with-debian-and-ubuntu-packages

Krill User Manual

(continued from previous page)

configured to expose the rsync repository files. By default these
files would be saved to: $data/repo/rsync/current/
rsync_jail = "rsync://krill.example.org/repo/"

TA AIA
#
Set the rsync location for your testbed trust anchor certificate.
#
You need to configure an rsync server to expose another module for the
TA certificate. Don't use the module for the repository as its
content will be overwritten.
#
Manually retrieve the TA certificate from krill and copy it
over - it won't change again. You can get it at:
https://<yourkrill>/ta/ta.cer
ta_aia = "rsync://krill.example.org/ta/ta.cer"

TA URI
#
Like above, make the TA certificate available over HTTPS and
specify the url here so that it may be included in the TAL.
ta_uri = "https://krill.example.org/ta/ta.cer"

17.5 Start / Enable krill

root@krill-test-09-rc:/etc# systemctl start krill
root@krill-test-09-rc:/etc# journalctl -u krill
-- Logs begin at Thu 2021-04-01 11:23:39 UTC, end at Thu 2021-04-01 19:55:19 UTC. --
Apr 01 19:55:17 krill-test-09-rc systemd[1]: Starting Krill...
Apr 01 19:55:17 krill-test-09-rc systemd[1]: Started Krill.
Apr 01 19:55:17 krill-test-09-rc krill[35246]: 2021-04-01 19:55:17 [INFO] Krill uses␣
→˓configuration file: /etc/krill.conf
Apr 01 19:55:17 krill-test-09-rc krill[35246]: 2021-04-01 19:55:17 [INFO] Starting Krill␣
→˓v0.8.2-bis
Apr 01 19:55:17 krill-test-09-rc krill[35246]: 2021-04-01 19:55:17 [INFO] Krill uses␣
→˓service uri: https://localhost:3000/
Apr 01 19:55:17 krill-test-09-rc krill[35246]: 2021-04-01 19:55:17 [INFO] Enabling␣
→˓TESTBED mode - ONLY USE THIS FOR TESTING AND TRAINING!
Apr 01 19:55:17 krill-test-09-rc krill[35246]: 2021-04-01 19:55:17 [INFO] Initializing␣
→˓repository
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Creating␣
→˓embedded Trust Anchor
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to publisher '0', version: 1: id '0' version 'any' details 'Added publisher 'ta
→˓''
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'ta', version: 1: id 'ta' version 'any' details 'Update repo to server␣
→˓at: https://localhost:3000/rfc8181/ta/'
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'ta', version: 2: id 'ta' version 'any' details 'Turn into Trust Anchor'

(continues on next page)

17.5. Start / Enable krill 155

Krill User Manual

(continued from previous page)

Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'ta', version: 3: id 'ta' version 'any' details 'Update received cert in␣
→˓RC '0', with resources 'asn: 1 blocks, v4: >
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Creating␣
→˓embedded Testbed CA
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to publisher '0', version: 2: id '0' version 'any' details 'Added publisher
→˓'testbed''
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'testbed', version: 1: id 'testbed' version 'any' details 'Update repo␣
→˓to server at: https://localhost:3000/rfc8181/>
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] CA 'ta'␣
→˓process add child request: handle 'testbed' resources 'asn: AS0-AS4294967295, v4: 0.0.
→˓0.0/0, v6: ::/0'
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'ta', version: 4: id 'ta' version 'any' details 'Add child 'testbed'␣
→˓with RFC8183 key '98A7BBA3491C84000FADFF48AA53E>
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Sending␣
→˓command to CA 'testbed', version: 2: id 'testbed' version 'any' details 'Add parent 'ta
→˓' as 'RFC 6492 Parent''
Apr 01 19:55:18 krill-test-09-rc krill[35246]: 2021-04-01 19:55:18 [INFO] Upgraded Krill␣
→˓to version: 0.8.2-bis
Apr 01 19:55:19 krill-test-09-rc krill[35246]: 2021-04-01 19:55:19 [INFO] Will re-sync␣
→˓all CAs with their parents and repository after startup

If all is well you should be able to see the public testbed page now, that allows ANY unauthorised user to register a
CA under your testbed and use it for publication, claiming any resources they please. This is by design. This meant
for testing. Did we mention testing? You get the point.. don’t use the TAL, also listed on that page, for anything BUT
testing.

To get to the page you need to know the URI: https://krill.example.org/index.html#/testbed

156 Chapter 17. Running a Krill Test Environment

https://krill.example.org/index.html#/testbed

CHAPTER

EIGHTEEN

RUNNING WITH DOCKER

This page explains the additional features and differences compared to running Krill with Cargo that you need to be
aware of when running Krill with Docker.

18.1 Get Docker

If you do not already have Docker installed, follow the platform specific installation instructions via the links in the
Docker official “Supported platforms” documentation.

18.2 Fetching and Running Krill

The docker run command will automatically fetch the Krill image for your CPU architecture the first time you use it,
and so there is no installation step in the traditional sense. The docker run command can take many arguments and
can be a bit overwhelming at first.

Note: The CPU architectures supported by the Krill Docker image are shown on the Docker Hub Krill page
<https://hub.docker.com/r/nlnetlabs/krill/tags> per Krill version (aka Docker “tag”) in the OS/ARCH column.

The command below runs Krill in the background and shows how to configure a few extra things like log level and
volume mounts (more on this below).

$ docker run -d --name krill -p 127.0.0.1:3000:3000 \
-e KRILL_LOG_LEVEL=debug \
-e KRILL_FQDN=rpki.example.net \
-e KRILL_AUTH_TOKEN=correct-horse-battery-staple \
-e TZ=Europe/Amsterdam \
-v krill_data:/var/krill/data/ \
-v /tmp/krill_rsync/:/var/krill/data/repo/rsync/ \
nlnetlabs/krill

Note: The Docker container by default uses UTC time. If you need to use a different time zone you can set this using
the TZ environment variable as shown in the example above.

157

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/engine/reference/run/

Krill User Manual

18.3 Admin Token

By default Docker Krill secures itself with an automatically generated admin token. You will need to obtain this token
from the Docker logs in order to manage Krill via the API or the krillc CLI tool.

$ docker logs krill 2>&1 | fgrep token
docker-krill: Securing Krill daemon with token <SOME_TOKEN>

You can pre-configure the token via the auth_token Krill config file setting, or if you don’t want to provide a config
file you can also use the Docker environment variable KRILL_AUTH_TOKEN as shown above.

18.4 Running the Krill CLI

18.4.1 Local

Using a Bash alias with <SOME_TOKEN> you can easily interact with the locally running Krill daemon via its command-
line interface (CLI):

$ alias krillc='docker exec \
-e KRILL_CLI_SERVER=https://127.0.0.1:3000/ \
-e KRILL_CLI_TOKEN=correct-horse-battery-staple \
nlnetlabs/krill krillc'

$ krillc list -f json
{
"cas": []

}

18.4.2 Remote

The Docker image can also be used to run krillc to manage remote Krill servers. Using a shell alias simplifies this
considerably:

$ alias krillc='docker run --rm \
-e KRILL_CLI_SERVER=https://rpki.example.net/ \
-e KRILL_CLI_TOKEN=correct-horse-battery-staple \
-v /tmp/ka:/tmp/ka nlnetlabs/krill krillc'

$ krillc list -f json
{

"cas": []
}

Note: The -v volume mount is optional, but without it you will not be able to pass files to krillc which some
subcommands require, e.g.

$ krillc roas update --ca my_ca --delta /tmp/delta.in

158 Chapter 18. Running with Docker

Krill User Manual

18.5 Service and Certificate URIs

The Krill service_uri and rsync_base config file settings can be configured via the Docker environment variable
KRILL_FQDN as shown in the example above. Providing KRILL_FQDN will set both service_uri and rsync_base.

18.6 Data

Krill writes state and data files to a data directory which in Docker Krill is hidden inside the Docker container and is
lost when the Docker container is destroyed.

18.6.1 Persistence

To protect the data you can write it to a persistent Docker volume which is preserved even if the Krill Docker container
is destroyed. The following fragment from the example above shows how to configure this:

docker run -v krill_data:/var/krill/data/

18.6.2 Access

Some of the data files written by Krill to its data directory are intended to be shared with external clients via the rsync
protocol. To make this possible with Docker Krill you can either:

• Mount the rsync data directory in the host and run rsyncd on the host, OR

• Share the rsync data with another Docker container which runs rsyncd

Mounting the data in a host directory:

docker run -v /tmp/krill_rsync:/var/krill/data/repo/rsync

Sharing via a named volume:

docker run -v krill_rsync:/var/krill/data/repo/rsync

18.7 Logging

Krill logs to a file by default. Docker Krill however logs by default to stderr so that you can see the output using the
docker logs command.

At the default warn log level Krill doesn’t output anything unless there is something to warn about. Docker Krill
however comes with some additional logging which appears with the prefix docker-krill:. On startup you will see
something like the following in the logs:

docker-krill: Securing Krill daemon with token ba473bac-021c-4fc9-9946-6ec109befec3
docker-krill: Configuring /var/krill/data/krill.conf ..
docker-krill: Dumping /var/krill/data/krill.conf config file
...
docker-krill: End of dump

18.5. Service and Certificate URIs 159

https://docs.docker.com/storage/volumes/
https://hub.docker.com/search?q=rsyncd&type=image

Krill User Manual

18.8 Environment Variables

The Krill Docker image supports the following Docker environment variables which map to the following krill.conf
settings:

Environment variable Equivalent Krill config setting
KRILL_AUTH_TOKEN auth_token
KRILL_FQDN service_uri and rsync_base
KRILL_LOG_LEVEL log_level
KRILL_USE_TA use_ta

To set these environment variables use -e when invoking docker, e.g.:

docker run -e KRILL_FQDN=https://rpki.example.net/

18.9 Using a Config File

Via a volume mount you can replace the Docker Krill config file with your own and take complete control:

docker run -v /tmp/krill.conf:/var/krill/data/krill.conf

This will instruct Docker to replace the default config file used by Docker Krill with the file /tmp/krill.conf on
your host computer.

18.10 Running as a non-root user

The Krill Docker image supports running Krill as the non-root user “krill” (UID 1012, GID 1012) but for backward
compatibility runs by default as user “root”.

One can specify that Krill should run as user “krill” like so:

docker run -u krill

Running as a different username, UID and/or GID requires building the Docker image yourself, e.g.:

cd path/to/krill/git/clone
docker build -t mykrill \
--build-arg RUN_USER=myuser \
--build-arg RUN_USER_UID=1234 \
--build-arg RUN_USER_GID=5678 \
.

Note: If running Krill inside the container as a non-root user and mounting the host filesystem or a Docker volume
under the Krill data directory you must ensure that the Krill data directory and subdirectories are writable by Krill.

160 Chapter 18. Running with Docker

CHAPTER

NINETEEN

UPGRADING KRILL

19.1 Upgrade

Krill upgrades may sometimes require that existing data is migrated to a new format used by the new release. Krill will
perform these migrations automatically in case you install a new version of Krill and restart it.

As the first step of this upgrade, any data that needs to be migrated is prepared under a new directory called
upgrade-data under the data_dir you configured. If you used a package to install Krill then the latter would be
/var/lib/krill/data.

If all is well then Krill will rename directories under the data_dir and archive your old data structures under directories
called arch_cas_version and/or arch_pubd_version. You can safely remove these directories in order to save
space later.

It is unlikely that a data migration should fail. We use automated and manual testing to make sure that these migrations
work. But, of course even with testing things can still go wrong. If the preparation step fails then krill will exit with an
error and refuse to start the new version.

If this happens, then you can abort the upgrade by re-installing your previous version of krill and starting that. And,
please do let us know by making an issue.

19.2 Prepare Upgrade with krillup

If the fully automated upgrade process seems a bit too scary to you, then we recommend that you perform this step
manually before upgrading krill itself.

Starting with Krill 0.9.5 we have introduced a new command line tool that can be used to help prepare for krill migra-
tions.

If you built Krill using Cargo then you will find that a new binary called krillup is installed alongside with krill. But,
if you are using the packages that we provide then you can install and upgrade this binary separately. For example on
a Debian system:

sudo apt install krillup

If you install and/or upgrade krillup first, before upgrading Krill itself then you will be able to prepare and verify an
upgrade while Krill is running. This is especially useful for large operations because some of these upgrades can take
a while. By using the separate tool any downtime is limited. Furthermore, if the preparation should unexpectedly fail,
then there will be no need to reinstall a previous version of Krill. You can simply abort the upgrade.

krillup only needs to be told where your config file lives. Here we use it to prepare an upgrade, where no actual data
migration is needed. This is not an error, so it will just report that the upgrade does not require preparation:

161

https://github.com/NLnetLabs/krill/issues

Krill User Manual

$ krillup -c ./defaults/krill.conf
2022-02-18 16:51:26 [INFO] Prepare upgrade using configuration file: ./defaults/krill.
→˓conf
2022-02-18 16:51:26 [INFO] Processing data from: ./data
2022-02-18 16:51:26 [INFO] Saving prepared data to: ./data/upgrade-data
2022-02-18 16:51:26 [INFO] No preparation is needed for the upgrade from 0.9.3-rc1 to 0.
→˓9.5-rc1.

Important: Once migrated data cannot be rolled back to the format of a previous Krill version. So, while an upgrade
can be aborted, it cannot be undone — other than by restoring data from the point before the upgrade and accepting
that any changes since then will have been lost.

So, please read up on important changes to see if you would be affected by functionality or API changes before you
upgrade.

19.3 Important Changes

19.3.1 v0.10.0

JSON Field Name Changes

When migrating support for RFC 6492, 8181 and 8183 into the base library rpki-rs (issue #765) we renamed some
fields which are also used in the JSON structures of the Krill API:

pre-0.10.0 0.10.0 reason
v4 ipv4 More decscriptive
v6 ipv6 More decscriptive
base_uri sia_base Term used in RFC 8183
rpki_notify rrdp_notification_uri Term used in RFC 8183

We still accept the old names as aliases on input, but if you are parsing JSON responses yourself then you will need to
update your code to accept the new names.

Parent Status Reporting

The parent status API and CLI text response now include the last known full RFC 6492 “Resource Class List Response”
content that your CA received.

The json structure of the parent statuses response changed from:

{
"my_parent": {
"last_exchange": {
"timestamp": 1617881400,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"next_exchange_before": 1617882000,

(continues on next page)

162 Chapter 19. Upgrading Krill

https://tools.ietf.org/html/rfc6492.html

Krill User Manual

(continued from previous page)

"all_resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"entitlements": {
"0": {
"parent_cert": {
"uri": "rsync://localhost/repo/ta/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.cer

→˓",
"cert_pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIHKDCCBhCgAwIBAgIUAgyEh9bfPbsXmR1LTAPsL045+tYwDQYJKoZIhvcNAQELBQAwggItMYICKTCCAiUGA1UEAxOCAhwzMDgyMDEwQTAyODIwMTAxMDBEODAxQzQzQ0U4NkYyQjI5MEM1QUVENEE0QjAxMTIwMjNBMjQzRTgzQjkzMkUyOTREMTc0Nzk5MTFFNUU5QTEwNURFREEzN0ZBQkEwNDFFRjYwRjA2QjE5NDAxMTIyMzY0QkI4RjYwRTQ1OUQ3RDYxM0UzNzQ1NzI1MkZDQjk3QUVBNzBGM0YxREI2NzIyQjkzNEIxREVBNTBGMDM2Q0FEOTc3QTBGMjhBNTA4QzY4NjM2OEI3QzQ1Qzc4MERGREZFQkNCNUU4MTBCODk0QkRFMzM5ODNCMjI1RjM5RDJCQTRGMzdEOUI5MjU2MjZFMkUyN0Y1RUJGRDJGMzc3MzY2MTEyREExNzdFQUY4RDdDMTY3NDQwNTgxQkMzNjY4N0Y2MjM3MkZGRDNCQ0NCODlCRjNDQkJBNzJBN0U0NEEwNkZDMUM1RDMwRUU2ODYxMjZCNjhEOENFRDczQkJFREUxN0M5RTJDMTNDRDIyNTYzMzI0NzgwMjVFMUYyMTdEMEREMzI2MzhDRDU1OENEMzZBRjcxMTlDOTJDQ0JFMUE0M0VGRjAyMDFEQjdGRTY4OTZCQzFGNkMwNzZFN0JGN0ZDNzAxRTc2NTVFMENBQ0I4RDk5OTlERkNBMzc2NkEzMkMzRUFCQTVGMTczMTlDQTg5QUZCNDlEQkU3MTZDNjYwMzAyMDMwMTAwMDEwHhcNMjEwMzI5MDc1ODQ2WhcNMjIwMzI4MDgwMzQ2WjAzMTEwLwYDVQQDEygwQkE1QzEzMkI5NDg5MUNCMkQzQTg5RURFMTJGMDFBQ0E0QkNEM0RDMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArKUiUmy4gbuaafgIP/
→˓q4q9w/gwwsAjoIP+cTm0FSmqhvqsc1GVI4DQ4mspjZ+O7esFqQywmcnU9MphnGq4EJwYKqT417fU8OQj/
→˓WbiCfFhnTrVTiz/LdLdDB4+VaypGfDwPuHb8pavj2dysKiGjLcF8zdon7a/
→˓xErHqOdetKlbY20TlvVvmLUeVVKfcnDkT8nsu2k+P+5BHBrb6oQoG4IhZ/w5n65m/
→˓ozLsq7pfLrsLgFe2b4zTXhu8KdJ/W1vsshM73jkpUdkvKxif6+H4mBrlMnWg7Jo0bRuff/
→˓C0dOAWdiPMXUs53Nw3+SBUjRxhXVWdbcHflkje58pcMkGKSBwIDAQABo4ICNjCCAjIwDwYDVR0TAQH/
→˓BAUwAwEB/zAdBgNVHQ4EFgQUC6XBMrlIkcstOont4S8BrKS809wwHwYDVR0jBBgwFoAUS9B/
→˓WEM89XrPSCIpOOkwBxZdNKQwDgYDVR0PAQH/
→˓BAQDAgEGMFkGA1UdHwRSMFAwTqBMoEqGSHJzeW5jOi8vbG9jYWxob3N0L3JlcG8vdGEvMC80QkQwN0Y1ODQzM0NGNTdBQ0Y0ODIyMjkzOEU5MzAwNzE2NUQzNEE0LmNybDA3BggrBgEFBQcBAQQrMCkwJwYIKwYBBQUHMAKGG3JzeW5jOi8vbG9jYWxob3N0L3RhL3RhLmNlcjCB1AYIKwYBBQUHAQsEgccwgcQwLQYIKwYBBQUHMAWGIXJzeW5jOi8vbG9jYWxob3N0L3JlcG8vdGVzdGJlZC8wLzBZBggrBgEFBQcwCoZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5tZnQwOAYIKwYBBQUHMA2GLGh0dHBzOi8vbG9jYWxob3N0OjMwMDAvcnJkcC9ub3RpZmljYXRpb24ueG1sMBgGA1UdIAEB/
→˓wQOMAwwCgYIKwYBBQUHDgIwJwYIKwYBBQUHAQcBAf8EGDAWMAkEAgABMAMDAQAwCQQCAAIwAwMBADAhBggrBgEFBQcBCAEB/
→˓wQSMBCgDjAMMAoCAQACBQD/////
→˓MA0GCSqGSIb3DQEBCwUAA4IBAQA3rQv0h6x5zX6iGfUZsH0wFSbQQrZgWoql8PsHANokm+Kaxeq3waemrp1/
→˓LCzdsMF4+74m6ijDmdbDbHlPyiQwpu3L1vZafj4eBPMdI7xFYgEgabddAGR60b272BgVIO6yND3B6UMeT56NzcCOtOcPtjlgucU3pufaCwup9p9AqRpJOTKfeuiLOw0a5c/
→˓yLU1zu3TmDP65+7zaIJebUxOpJ9/4HSG7HsKEU9NHXr414vknGUr8XXiQ0/
→˓7f8DrpecGEK2fKu87kBYlewj4zNxJOeQ4heQ4/hJtEeS6dLKz+/VwaUbudlN9/c5QF5ow2bAsNM//
→˓ieEWWRL+B0Srr9uNr\n-----END CERTIFICATE-----\n"

},
"received": [
{
"uri": "rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",
"resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"cert_pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp\
→˓n-----END CERTIFICATE-----\n"

}
]

(continues on next page)

19.3. Important Changes 163

Krill User Manual

(continued from previous page)

}
}

}

To:

{
"my_parent": {
"last_exchange": {
"timestamp": 1617881400,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"last_success": 1617881400,
"all_resources": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"classes": [

{
"class_name": "0",
"resource_set": {
"asn": "AS65000",
"ipv4": "10.0.0.0/8",
"ipv6": "2001:db8::/32"

},
"not_after": "2023-03-15T14:23:57Z",
"issued_certs": [
{
"uri": "rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",
"req_limit": {},
"cert": "MII..."

}
],
"signing_cert": {
"url": "rsync://localhost/repo/ta/0/0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.

→˓cer",
"cert": "MII..."

}
}

]
}

}

164 Chapter 19. Upgrading Krill

Krill User Manual

19.3.2 v0.9.3 to v0.9.5

There are no API changes or data migrations.

After upgrading the Publication Server (if you run one) will use 1 as the first RRDP serial number, instead of 0.
Furthermore, you will now be able to configure the timeout for a complete RFC 6492 and RFC 8181 client HTTP
request-response round-trip to the parent or publisher, excluding the time required to establish the connection, using
post_protocol_msg_timeout_seconds.

19.3.3 v0.9.0/1/2 to v0.9.3

There are no API changes, but users may want to be aware that the ‘next update’ time for manifests and CRLs has been
changed from a fixed 24 hours (by default) to 24 hours and a random amount of extra time between 0 and 240 minutes
(4 hours). This does not affect the validity of objects, but may lead to surprises if you are monitoring that republication
would happen withing 17 hours after last publication (8 hours before objects would expire). This can now take up to
21 hours (using defaults).

Furthermore experimental ASPA support was added, but it’s hidden in the CLI until the ASPA standards reach stability
in the IETF. If you want to read more about the experimental ASPA support in Krill then have a look here:

https://krill.docs.nlnetlabs.nl/en/prototype-aspa-support/manage-aspas.html

19.3.4 v0.9.0/1 to v0.9.2

The Prometheus metrics have been updated. The metric krill_cas_roas has been renamed to
krill_cas_bgp_roas_total for consistency. Please have a look at the updated monitoring page for more
details.

19.3.5 v0.8.2 and below to v0.9.x

There are a number of API changes between v0.9.0 and previous versions. The main reasons for these changes are:

1. Krill no longer has the concept of embedded CA parent-child or repo-ca relations. If you have multiple CAs in a
single Krill instance and/or a Publication Server, then Krill will now always use the official RFC protocol - even
if both entities live in the same Krill instance.

2. We wanted to make the API consistent.

But most importantly: We wanted to make the API stable so we can work towards Krill 1.0

Here we will list all CLI commands and API calls that were changed between Krill 0.8.2 and this version. This list
should be complete, so old CLI commands not listed here should not have changed.

In case you do find something that we overlooked please let us know!

19.3. Important Changes 165

https://tools.ietf.org/html/rfc6492.html
https://tools.ietf.org/html/rfc8181.html
https://krill.docs.nlnetlabs.nl/en/prototype-aspa-support/manage-aspas.html

Krill User Manual

krillc parents update

The update command has been removed and is now folded in to krillc parents add.

krillc parents add

If you add a parent which already exists for your CA, then this will act as an ‘update’ instead. I.e. the previously known
RFC 8183 Parent Response for the parent will be replaced.

The CLI command is unchanged:

$ krillc parents add --ca newca --parent testbed --response ./parent-response.xml

But there were changes to the API.

Adding a parent can be done by posting XML or JSON to on of the following paths:

/api/v1/cas/<ca>/parents
/api/v1/cas/<ca>/parents/<handle>

The <handle> is the LOCAL name that your CA will use for this parent. Regardless of how they like to call themselves.
If it is omitted then it will be extracted from the XML parent_handle. If it is specified for a JSON POST but _differs_
from the handle in the JSON body, then an error is returned.

The server will verify in all cases that the parent can be reached. If there was no parent for the name a parent will be
added, otherwise the parent contact details will be updated.

The JSON body has to include the local name by which the CA will refer to its parent, this is also the name shown to
the user in the UI. The local name maps to the handle field in the JSON below. The second component is the contact.
Krill used to support an embedded type, but this is no longer supported.

Instead of a JSON member under contact we now have "type": "rfc6492" here. We still have this type because
this allows for the notion of Trust Anchor - which we use in test setups - and it keeps the door open to future additions
(eg if there ever is an RFC 6492 bis). The remainder of the structure is unchanged, and maps to the RFC 8183 Parent
Response XML, but then in JSON format. Note that the parent_handle is the handle that the parent wants the CA to
use in messages sent to it - and it may be different from the local name stored in handle.

OLD JSON:

{
"handle": "testbed",
"contact": {
"rfc6492": {
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg5N0VEOUFCMUQ4Q0JBNzFBMTJEQjE2MTU4OTA3Njk4QUI0QTAzMUQ5MB4XDTIwMDkxNjA5MTAxMloXDTM1MDkxNjA5MTUxMlowMzExMC8GA1UEAxMoOTdFRDlBQjFEOENCQTcxQTEyREIxNjE1ODkwNzY5OEFCNEEwMzFEOTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnEJkDvrR7iY0VoRGvajDWxo2krplOnZynM1kgXtN8L3StS6YE7/
→˓sXvoG1C1pRPs/SBZ7gK6WvFlqdScZ6kbTVH51e+pLUV9Q7Uxqm4lSzWTmnjT/
→˓CmRRXqmcPlcPcAm8rhUW6GrZQ2mllil4pkZ+JNGugSQUJJb1bGg5+Et/
→˓YdIEDEO1stAIsNkfkAyELAeFULLhs0MuXpSKp/ZKu+IgMSt+Z/
→˓7is+qFt4cgMuiZRuADw8hTDoMuZpoxIqXeh4Nf3bUU06MXGgrpabVzArs11UVyXDC4ZG4oOsYDTNgIL5VYaBjiHtw+s+FWHYI3iTzwV8th2C1JI6LOOBkxZdxQUCAwEAAaNTMFEwDwYDVR0TAQH/
→˓BAUwAwEB/
→˓zAdBgNVHQ4EFgQUl+2asdjLpxoS2xYViQdpirSgMdkwHwYDVR0jBBgwFoAUl+2asdjLpxoS2xYViQdpirSgMdkwDQYJKoZIhvcNAQELBQADggEBAB34RLGHufEpypzvDFzffkS7Oet9TUZSV1nB7EPGA7BJLvUnJt2SAv+0LhFRup518oQMpeM8HxA7vcRMt6JNTWydW/
→˓bYp/
→˓NnAk+u+Hw5AIwxuoGWgwyHXZh1xJFhwD35SqjMhxbo15J090+22zwAa8t6aqQAZhvACs2Jst1aHnnJEduQzGVZYLIYvGv5/
→˓K0t0i0eE5hINhtAy0hFGwteXms8/qA/
→˓mExsrjubC69SudPlMA3q8p2RmuwqmjSlwDjU1XrJ1j5wMCqeBoh8EnaMe+HVduQGHm0nHJbF3klz9mz3Tc6CILT4XA5mJq1g0LXypJ9c6KxZFoC10ce/
→˓enulLYw=", (continues on next page)

166 Chapter 19. Upgrading Krill

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://testbed.krill.cloud/rfc6492/testbed"

}
}

}

Was changed to:

{
"handle": "my_parent",
"contact": {
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",
"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://localhost:3000/rfc6492/testbed"

}
}

krillc parents contact

The CLI command was unchanged:

$ krillc parents contact --parent testbed

And the default text response is still the RFC 8183 Parent Response XML for the parent. But, the JSON response body
was changed, and now includes an explicit "type": "rfc6492":

OLD:

{
"rfc6492": {
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg5N0VEOUFCMUQ4Q0JBNzFBMTJEQjE2MTU4OTA3Njk4QUI0QTAzMUQ5MB4XDTIwMDkxNjA5MTAxMloXDTM1MDkxNjA5MTUxMlowMzExMC8GA1UEAxMoOTdFRDlBQjFEOENCQTcxQTEyREIxNjE1ODkwNzY5OEFCNEEwMzFEOTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnEJkDvrR7iY0VoRGvajDWxo2krplOnZynM1kgXtN8L3StS6YE7/
→˓sXvoG1C1pRPs/SBZ7gK6WvFlqdScZ6kbTVH51e+pLUV9Q7Uxqm4lSzWTmnjT/
→˓CmRRXqmcPlcPcAm8rhUW6GrZQ2mllil4pkZ+JNGugSQUJJb1bGg5+Et/
→˓YdIEDEO1stAIsNkfkAyELAeFULLhs0MuXpSKp/ZKu+IgMSt+Z/
→˓7is+qFt4cgMuiZRuADw8hTDoMuZpoxIqXeh4Nf3bUU06MXGgrpabVzArs11UVyXDC4ZG4oOsYDTNgIL5VYaBjiHtw+s+FWHYI3iTzwV8th2C1JI6LOOBkxZdxQUCAwEAAaNTMFEwDwYDVR0TAQH/
→˓BAUwAwEB/
→˓zAdBgNVHQ4EFgQUl+2asdjLpxoS2xYViQdpirSgMdkwHwYDVR0jBBgwFoAUl+2asdjLpxoS2xYViQdpirSgMdkwDQYJKoZIhvcNAQELBQADggEBAB34RLGHufEpypzvDFzffkS7Oet9TUZSV1nB7EPGA7BJLvUnJt2SAv+0LhFRup518oQMpeM8HxA7vcRMt6JNTWydW/
→˓bYp/
→˓NnAk+u+Hw5AIwxuoGWgwyHXZh1xJFhwD35SqjMhxbo15J090+22zwAa8t6aqQAZhvACs2Jst1aHnnJEduQzGVZYLIYvGv5/
→˓K0t0i0eE5hINhtAy0hFGwteXms8/qA/
→˓mExsrjubC69SudPlMA3q8p2RmuwqmjSlwDjU1XrJ1j5wMCqeBoh8EnaMe+HVduQGHm0nHJbF3klz9mz3Tc6CILT4XA5mJq1g0LXypJ9c6KxZFoC10ce/
→˓enulLYw=",

(continues on next page)

19.3. Important Changes 167

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://testbed.krill.cloud/rfc6492/testbed"

}
}

NEW:

{
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg5N0VEOUFCMUQ4Q0JBNzFBMTJEQjE2MTU4OTA3Njk4QUI0QTAzMUQ5MB4XDTIwMDkxNjA5MTAxMloXDTM1MDkxNjA5MTUxMlowMzExMC8GA1UEAxMoOTdFRDlBQjFEOENCQTcxQTEyREIxNjE1ODkwNzY5OEFCNEEwMzFEOTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnEJkDvrR7iY0VoRGvajDWxo2krplOnZynM1kgXtN8L3StS6YE7/
→˓sXvoG1C1pRPs/SBZ7gK6WvFlqdScZ6kbTVH51e+pLUV9Q7Uxqm4lSzWTmnjT/
→˓CmRRXqmcPlcPcAm8rhUW6GrZQ2mllil4pkZ+JNGugSQUJJb1bGg5+Et/
→˓YdIEDEO1stAIsNkfkAyELAeFULLhs0MuXpSKp/ZKu+IgMSt+Z/
→˓7is+qFt4cgMuiZRuADw8hTDoMuZpoxIqXeh4Nf3bUU06MXGgrpabVzArs11UVyXDC4ZG4oOsYDTNgIL5VYaBjiHtw+s+FWHYI3iTzwV8th2C1JI6LOOBkxZdxQUCAwEAAaNTMFEwDwYDVR0TAQH/
→˓BAUwAwEB/
→˓zAdBgNVHQ4EFgQUl+2asdjLpxoS2xYViQdpirSgMdkwHwYDVR0jBBgwFoAUl+2asdjLpxoS2xYViQdpirSgMdkwDQYJKoZIhvcNAQELBQADggEBAB34RLGHufEpypzvDFzffkS7Oet9TUZSV1nB7EPGA7BJLvUnJt2SAv+0LhFRup518oQMpeM8HxA7vcRMt6JNTWydW/
→˓bYp/
→˓NnAk+u+Hw5AIwxuoGWgwyHXZh1xJFhwD35SqjMhxbo15J090+22zwAa8t6aqQAZhvACs2Jst1aHnnJEduQzGVZYLIYvGv5/
→˓K0t0i0eE5hINhtAy0hFGwteXms8/qA/
→˓mExsrjubC69SudPlMA3q8p2RmuwqmjSlwDjU1XrJ1j5wMCqeBoh8EnaMe+HVduQGHm0nHJbF3klz9mz3Tc6CILT4XA5mJq1g0LXypJ9c6KxZFoC10ce/
→˓enulLYw=",
"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://testbed.krill.cloud/rfc6492/testbed"

}

krillc repo request

The CLI is unchanged, but the endpoints for getting the RFC 8183 Publisher Request XML and JSON have moved
from repo, and are now under id:

/api/v1/cas/<name>/repo/request.xml -> /api/v1/cas/<name>/id/publisher_request.xml
/api/v1/cas/<name>/repo/request.json -> /api/v1/cas/<name>/id/publisher_request.json

krillc repo update

This command has been renamed to krillc repo configure:

$ krillc repo configure --ca newca --response ./data/new-ca-repository-response.xml

The API has also changed. The path is unchanged, but the following to add an “embedded” repository is no longer
supported:

{
"tag": "string",
"id_cert": "string",
"child_handle": "string"

}

168 Chapter 19. Upgrading Krill

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

The API end-point will accept either plain RFC 8183 Repository Response XML, or a JSON equivalent. In comparison
to previous versions of Krill rfc8181 was renamed to repository_response:

{
"repository_response": {
"tag": null,
"publisher_handle": "publisher",
"id_cert": "MIID..6g==",
"service_uri": "https://repo.example.com/rfc8181/publisher/",
"repo_info": {
"base_uri": "rsync://localhost/repo/ca/",
"rpki_notify": "https://localhost:3000/rrdp/notification.xml"

}
}

}

krillc repo show

The CLI command and API path are unchanged, but rfc8181 was renamed to repository_response in the JSON
response.

krillc children add

The CLI is unchanged, but because ‘embedded’ children are no longer supported we were able to simplify the JSON
from:

{
"handle": "ca",
"resources": {
"asn": "AS1",
"v4": "10.0.0.0/8",
"v6": "::"

},
"auth": {
"rfc8183": {
"tag": null,
"child_handle": "ca",
"id_cert": "<base64>"

}
}

}

To this:

{
"handle": "ca",
"resources": {
"asn": "AS1",
"v4": "10.0.0.0/8",
"v6": "::"

},
(continues on next page)

19.3. Important Changes 169

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"id_cert": "<base64>"
}

krillc history and krillc action

The API and JSON are unchanged, but these commands have now been renamed to krillc history commands and
krillc history details.

170 Chapter 19. Upgrading Krill

CHAPTER

TWENTY

FAILURE AND RECOVERY SCENARIOS

20.1 CA Temporarily Unavailable

Issue
The Krill instance for your CA is temporarily unavailable

Consequences
You cannot change ROAs
You cannot change delegations to child CAs
Krill will not update its repository

If the outage is short, e.g. because you are performing a planned upgrade, then this will have little or no impact. The
RPKI objects which were published by your CA will remain unchanged, so your ROAs will still be found and considered
valid by RPKI validators.

Note that if you are using automation to keep your ROAs in sync with your routing configuration, you should take care
to ensure that your set up can deal with a short outage of your CA and tries to re-apply any possible ROA changes in
case your CA was unavailable.

If the outage takses longer than 8 hours (using default settings), then your CA publication point will become expired
and the impact will be bigger.

20.2 Parent Temporarily Unavailable

Issue
The parent of your CA is temporarily unavailable

Consequences
You will not receive changes to your resource certificate
You cannot perform a key roll

As long as the parent repository is not expired (see below) this has minimal impact on your CA. Krill CAs will check
for updated resource and validity time entitlements every 10 minutes, and they will just keep trying.

The status is shown in the UI, but you can also use the following CLI command:

171

Krill User Manual

krillc parents statuses

If you parent CA is unavailable due to an outage, or an ongoing upgrade, then there is not much that you can do. You
may want to talk to them, but a responsible parent should monitor their own operations, so they are expected to become
available again without the need for you to take action. But note that you should verify whether the issue on your side.
E.g. there may be a network issue, or firewall rule preventing your CA for contacting the parent CA.

20.3 Publication Point Expired

Issue
The manifest or CRL of your CA expired

Consequences
Your published objects are no longer valid
Your routes become “not found” in most cases

When your manifest or CRL become expired your RPKI objects will become invalid. This problem can occur if your
CA is down, or if your CA cannot publish updated objects at its publication server, for a prolonged period of time.

Krill uses a default validity time of 24 hours for manifests and CRLs, and replaces them 8 hours before they would
expire. This means that from the moment of the outage you have 8-24 hours to prevent that your objects will be
invalidated.

It is possible to change these defaults if you want to have more time to deal with potential issues. However, we rec-
ommend that you avoid using long validity times because in theory they could make you vulnerable to replay attacks
where a malicious actor feeds old objects to RPKI validators. This attack is not trivial, but it’s not impossible either.

A reasonable compromise could be to use a validity time of 36 hours, and have Krill reissue manifests and CRLs 24
hours before they would expire. You can achieve this by adding the following directives to your configuration file:

timing_publish_next_hours = 36
timing_publish_hours_before_next = 24

When your objects, most importantly ROAs, become invalid your routes will usually become “not found”, rather than
“invalid”. Meaning that your routes will no longer benefit from Route Origin Validation, but they will still be accepted.

For a route to become RPKI “invalid” it would need to be covered by one or more valid ROA objects which include
this prefix, none of which allow the possibly more specific prefix and ASN.

In the set up we see today this is unlikely to happen as most Krill CAs will operate directly under a parent RIR or NIR,
and will not delegate prefixes to children. RIRs and NIRs do not issue ROAs for delegated prefixes, so in case your
publication point would be rejected there would be no remaining valid ROA objects for your announcement. The result
is that they then get an RPKI validity state “not found”.

However, in complicated setups your routes can become invalid. For example if your organisation operates a main CA
under an RIR, and it publishes ROAs, while delegating some resources covered by those ROAs to you (e.g. a business
unit or customer), and your publication point is expired while your parent’s publication point is still current.. then your
routes can become “invalid”.

If it can be helped it would therefore be advisable that your parent does not delegate resources for which they also
manage ROAs.

172 Chapter 20. Failure and Recovery Scenarios

Krill User Manual

20.4 Parent Publication Point Expired

Issue
The manifest or CRL of your parent CA expired

Consequences
Your published objects are no longer valid
Your routes become “not found” in most cases

If your parent CA’s publication point is expired, then its objects will become invalid. This includes the certificate for
the delegation done to you, and therefore your objects will also no longer be considered valid by RPKI validators.

As described above this will typically mean that your routes end up with the RPKI validity state “not found”. The
chances of them becoming “invalid” are actually somewhat lower still becuase any possible ROAs issued by your
parent or siblings (other children under the same parent) covering your resources would also be invalid.

20.4. Parent Publication Point Expired 173

Krill User Manual

174 Chapter 20. Failure and Recovery Scenarios

INDEX

R
RFC

RFC 6489, 89, 90, 129–131, 133
RFC 6492, 11, 57, 85, 129, 130, 135, 162, 165
RFC 8181, 133, 135, 165
RFC 8183, 50, 53, 57–59, 82, 86, 87, 121, 133, 166–

169
RFC 8205, 147
RFC 8209, 78, 147

175

	Before You Start
	The Moving Parts
	Publishing With Your Parent
	Publishing Yourself
	System Requirements

	Architecture
	Used Disk Space
	Archiving

	Saving State Changes
	Loading State at Startup
	Recover State at Startup
	Backup / Restore
	Krill Upgrades
	Krill Downgrades
	Proxy and HTTPS
	HTTPS Mode
	Proxy Krill UI
	Proxy Krill as Parent
	Proxy Krill as Publication Server

	Install and Run
	Quick Start
	Updating
	Installing Specific Versions
	Installing with Cargo
	Rust
	C Toolchain
	OpenSSL
	Building

	Generate Configuration File
	Start and Stop the Daemon

	Get Started with Krill
	Login
	Create your Certification Authority
	Repository Setup
	Parent Setup

	RIR and NIR Interactions
	Hosted Publication Server
	Member Portals
	AFRINIC
	APNIC
	ARIN
	LACNIC
	RIPE NCC

	Manage ROAs
	Show BGP Info
	ROA Suggestions
	Add a ROA
	Disable BGP Info

	Monitoring
	Prometheus
	General Metrics
	CA Metrics
	Child metrics
	ROA Metrics
	Publication Server Metrics

	Stats Endpoints

	Using the CLI or API
	Introduction
	Setting Defaults
	Explore the API
	krillc config
	krillc health
	krillc info
	krillc add
	krillc delete
	krillc list
	krillc parents
	krillc parents request
	krillc parents add
	krillc parents statuses
	krillc parents contact
	krillc parents remove
	krillc repo
	krillc repo request
	krillc repo configure
	krillc repo status
	krillc repo show
	krillc show
	krillc issues
	krillc history
	krillc history commands
	krillc history details
	krillc roas
	krillc roas list
	krillc roas update
	krillc roas bgp
	krillc bgpsec
	krillc bgpsec list
	krillc bgpsec add
	krillc bgpsec remove
	krillc bulk
	krillc bulk publish
	krillc bulk refresh
	krillc bulk sync
	krillc children
	krillc children add
	krillc children info
	krillc children update
	krillc children response
	krillc children connections
	krillc children suspend
	krillc children unsuspend
	krillc children remove
	krillc keyroll
	krillc keyroll init
	krillc keyroll activate

	Login with Named Users
	Permissions, Roles & Attributes
	Permissions
	User Attributes
	Role Based Access Control
	Attribute Based Access Control

	Config File Users
	Introduction
	How does it work?
	Known limitations
	Setting it up
	1. Decide on the settings to be configured.
	2. Configure Krill
	3. Go!

	Advanced configuration
	Additional sources of information

	OpenID Connect Users
	Introduction
	Why OpenID Connect?
	Why not OAuth 2.0?

	How does it work?
	The user experience
	In the background

	Known limitations
	Choosing a provider
	Setting it up
	Overview
	Using Keycloak
	1. Decide on the settings to be configured.
	2. Configure the provider
	Download and run Keycloak
	Login to the Keycloak admin UI
	Create a realm
	Create a client application
	Configure a role mapper
	Create the users

	3. Configure Krill
	4. Go!

	With other providers
	Understanding claims
	Matching claims by name
	Matching claims by value
	Matching claims by partial value
	Matching claims to config values (aka ‘hybrid’ mode)
	Requesting missing claims
	Diagnosing login problems

	Custom Authorization Policies
	Introduction
	Examples
	role-per-ca-demo
	team-based-access-demo

	Using custom policies
	Writing custom policies
	Defining new roles
	Defining new rules
	Diagnosing issues

	Running a Publication Server
	Why run your own?
	Install
	Configure
	Proxy for Remote Publishers
	Proxy for CLI and API
	Configure the Repository
	Synchronise Repository Data
	Rsync
	RRDP
	Initialise Publication Server
	Repository Stats

	Manage Publishers
	Add a Publisher
	List Publishers
	List Stale Publishers
	Show a Publisher
	Remove a Publisher

	Migrate existing Krill CAs

	Delegate to Child CAs
	Key Rollover
	Quick Guide to Key Rollovers
	Key Life Cycle Background

	Migrate to a new Repository
	Hardware Security Modules
	Overview
	Integrating with an HSM
	Compatible HSMs
	PKCS#11 or KMIP?

	Scenarios
	Fresh installation
	Migrating to or between HSMs

	Configuration
	Signer Roles
	Configuring a PKCS#11 signer
	Configuring a KMIP signer

	Signer Lifecycle
	SoftHSMv2 Example
	Configuration Reference

	Manage BGPSec Router Certificates
	Manage ASPA Objects
	Install CLI
	ASPA Configurations
	ASPA Configuration Notation
	Add an ASPA
	List ASPAs
	Update an ASPA
	Remove an ASPA

	Running a Krill Test Environment
	Install a Proxy Server
	Set up Letsencrypt
	Install Krill
	Configure Testbed
	Start / Enable krill

	Running with Docker
	Get Docker
	Fetching and Running Krill
	Admin Token
	Running the Krill CLI
	Local
	Remote

	Service and Certificate URIs
	Data
	Persistence
	Access

	Logging
	Environment Variables
	Using a Config File
	Running as a non-root user

	Upgrading Krill
	Upgrade
	Prepare Upgrade with krillup
	Important Changes
	v0.10.0
	JSON Field Name Changes
	Parent Status Reporting

	v0.9.3 to v0.9.5
	v0.9.0/1/2 to v0.9.3
	v0.9.0/1 to v0.9.2
	v0.8.2 and below to v0.9.x
	krillc parents update
	krillc parents add
	krillc parents contact
	krillc repo request
	krillc repo update
	krillc repo show
	krillc children add
	krillc history and krillc action

	Failure and Recovery Scenarios
	CA Temporarily Unavailable
	Parent Temporarily Unavailable
	Publication Point Expired
	Parent Publication Point Expired

	Index

