
Krill User Manual

NLnet Labs

Jun 01, 2021

CONTENTS

1 Before You Start 3
1.1 The Moving Parts . 3
1.2 Publishing With Your Parent . 4
1.3 Publishing Yourself . 4
1.4 System Requirements . 5

2 Architecture 7
2.1 Used Disk Space . 7
2.2 Saving State Changes . 8
2.3 Loading State at Startup . 9
2.4 Recover State at Startup . 9
2.5 Backup and Restore . 10
2.6 Krill Upgrades . 10
2.7 Proxy and HTTPS . 10

3 Install and Run 13
3.1 Installing with Debian and Ubuntu Packages . 13
3.2 Installing with Cargo . 14

4 Get Started with Krill 17
4.1 Login . 17
4.2 Create your Certificate Authority . 19
4.3 RIR and NIR Interactions . 19
4.4 Hosted Publication Server . 21
4.5 Repository Setup . 21
4.6 Parent Setup . 21

5 Manage ROAs 27
5.1 Show BGP Info . 27
5.2 ROA Suggestions . 30
5.3 Add a ROA . 32

6 Using the CLI or API 33
6.1 Introduction . 33
6.2 Setting Defaults . 33
6.3 Explore the API . 34
6.4 krillc config . 35
6.5 krillc health . 35
6.6 krillc info . 36
6.7 krillc add . 36
6.8 krillc delete . 37

i

6.9 krillc list . 37
6.10 krillc parents . 38
6.11 krillc parents request . 38
6.12 krillc parents add . 39
6.13 krillc parents statuses . 40
6.14 krillc parents contact . 42
6.15 krillc parents remove . 43
6.16 krillc repo . 43
6.17 krillc repo request . 44
6.18 krillc repo configure . 44
6.19 krillc repo status . 45
6.20 krillc repo show . 47
6.21 krillc show . 47
6.22 krillc issues . 50
6.23 krillc history . 51
6.24 krillc history commands . 51
6.25 krillc history details . 53
6.26 krillc roas . 55
6.27 krillc roas list . 56
6.28 krillc roas update . 56
6.29 krillc roas bgp . 61
6.30 krillc bulk . 63
6.31 krillc bulk publish . 63
6.32 krillc bulk refresh . 64
6.33 krillc bulk sync . 64
6.34 krillc children . 64
6.35 krillc children add . 65
6.36 krillc children info . 66
6.37 krillc children update . 67
6.38 krillc children response . 68
6.39 krillc children remove . 69
6.40 krillc keyroll . 69
6.41 krillc keyroll init . 70

7 Using the API 71
7.1 Getting Help . 71
7.2 Generating Client Code . 71
7.3 Sample Application . 71

8 Monitoring 73

9 Failure Scenarios 75
9.1 Hardware and Software Failures . 75
9.2 Usage Failures . 77

10 Running a Publication Server 79
10.1 Configuring a Krill Repository . 80
10.2 Proxy for Remote Publishers . 80
10.3 Configuring Repository Servers . 81
10.4 Publishing in the Repository . 82
10.5 Migrating the Repository . 82

11 Running with Docker 83
11.1 Get Docker . 83
11.2 Fetching and Running Krill . 83

ii

11.3 Admin Token . 84
11.4 Running the Krill CLI . 84
11.5 Service and Certificate URIs . 85
11.6 Data . 85
11.7 Logging . 85
11.8 Environment Variables . 86
11.9 Using a Config File . 86

Index 87

iii

iv

Krill User Manual

Krill is a free, open source Resource Public Key Infrastructure (RPKI) daemon, featuring a Certificate Authority (CA)
and publication server, written by NLnet Labs.

Using Krill, you can run your own RPKI Certificate Authority as a child of one or more parent CAs, usually your
Regional Internet Registry (RIR) or National Internet Registry (NIR).

Krill is especially convenient if your organisation holds address space in several RIR regions, or if your organisation
represents multiple entities. All ASNs and IP resources you have across the various entities and RIR regions are
presented as a single pool, allowing you to manage ROAs seamlessly.

Krill can also act as a parent for child CAs. This means you can delegate some of your resources down to children of
your own, such as business units, departments or customers, who, in turn, manage ROAs themselves.

Krill can be managed with a web user interface, from the command line and through an API. The powerful user
interface shows the RPKI validation status of your BGP announcements, warns about possible issues, and offers
suggestions on ROAs you may want to create or remove. Prometheus endpoints offer monitoring of system status,
ROA misconfigurations and possible BGP hijacks.

You are welcome to ask questions or post comments and ideas on our RPKI mailing list. If you find a bug in Krill,
feel free to create an issue on GitHub. Krill is distributed under the Mozilla Public License 2.0.

Table of Contents

CONTENTS 1

https://nlnetlabs.nl
https://nlnetlabs.nl/mailman/listinfo/rpki
https://github.com/NLnetLabs/krill/issues

Krill User Manual

2 CONTENTS

CHAPTER

ONE

BEFORE YOU START

RPKI is a very modular system and so is Krill. Which parts you need and how you fit them together depends on
your situation. Before you begin with installing Krill, there are some basic concepts you should understand and some
decisions you need to make.

1.1 The Moving Parts

With Krill there are two fundamental pieces at play. The first part is the Certificate Authority (CA), which takes
care of all the cryptographic operations involved in RPKI. Secondly, there is the publication server which makes your
certificate and ROAs available to the world.

In almost all cases you will need to run the CA that Krill provides under a parent CA, usually your Regional Internet
Registry (RIR) or National Internet Registry (NIR). The communication between the parent and the child CA is
initiated through the exchange of two XML files, which you need to handle manually: a child request XML and a
parent response XML. This involves generating the request file, providing it to your parent, and giving the response
file back to your CA.

After this initial exchange has been completed, all subsequent requests and responses are handled by the parent and
child CA themselves. This includes the entitlement request and response that determines which resources you receive
on your certificate, the certificate request and response, as well as the revoke request and response.

Important: The initial XML file exchange is the only manual step required to get started with Delegated RPKI. All
other requests and responses, as well as re-signing and renewing certificates and ROAs are automated. As long as Krill
is running, it will automatically update the entitled resources on your certificate, as well as reissue certificates,
ROAs and all other objects before they expire or become stale. Note that even if Krill does go down, you have 8
hours to bring it back up before data starts going stale.

Whether you also run the Krill publication server depends on if you can, or want to use one offered by a third party.
For the general wellbeing of the RPKI ecosystem, we would generally recommend to publish with your parent CA,
if available. Setting this up is done in the same way as with the CA: exchanging a publisher request XML and a
repository response XML.

3

Krill User Manual

1.2 Publishing With Your Parent

If you can use a publication server provided by your parent, the installation and configuration of Krill becomes ex-
tremely easy. After the installation has completed, you perform the XML exchange twice and you are done.

Fig. 1: A repository hosted by the parent CA, in this case the RIR or NIR.

Krill is designed to run continuously, but there is no strict uptime requirement for the CA. If the CA is not available
you just cannot create or update ROAs. This means you can bring Krill down to perform maintenance or migration, as
long as you bring it back up within 8 hours to ensure your cryptographic objects are re-signed before they go stale.

Note: This scenario illustrated here also applies if you use an RPKI publication server offered by a third party.

At this time, only APNIC and Brazilian NIR NIC.br offer a publication server for their members. Several RIRs have
this functionality on their roadmap. This means that in most cases, you will have to publish yourself.

1.3 Publishing Yourself

Krill features a publication server, disabled by default, but which can be used to host a server for yourself, and others,
such as customers or business units who run their own Krill CAs as children under your CA, and to whom you have
delegated resource certificates.

If you run Krill as a publication server, you will be faced with running a public service with all related responsibilities,
such as uptime and DDoS protection. This option is not recommended if you don’t have a clear need to run your own
server.

Read more about this option in Running a Publication Server

4 Chapter 1. Before You Start

Krill User Manual

1.4 System Requirements

The system requirements for Krill are quite minimal. The cryptographic operations that need to be performed by the
Certificate Authority have a negligible performance and memory impact on any modern day machine.

When you publish ROAs yourself using the Krill publication server in combination with Rsyncd and a web server of
your choice, you will see traffic from several hundred relying party software tools querying every few minutes. The
total amount of traffic is also negligible for any modern day situation.

Tip: For reference, NLnet Labs runs Krill in production and serves ROAs to the world using a 2 CPU / 2GB RAM /
60GB disk virtual machine. Although we only serve four ROAs and our repository size is 16KB, the situation would
not be different if serving 100 ROAs.

1.4. System Requirements 5

Krill User Manual

6 Chapter 1. Before You Start

CHAPTER

TWO

ARCHITECTURE

This section is intended to give you an overview of the architecture of Krill, which is important to keep in mind when
deploying the application in your infrastructure. It will give you an understanding how and where data is stored, how
to make your setup redundant and how to save and restore backups.

Warning: Krill does NOT support clustering at this time. You can achieve high availability by doing a fail-over
to a standby inactive installation using the same data and configuration. However, you cannot have multiple active
instances. This feature is on our long term roadmap.

2.1 Used Disk Space

Krill stores all of its data under the DATA_DIR specified in the configuration file. For users who will operate a CA
under an RIR / NIR parent the following sub-directories are relevant:

Directory Contents
data_dir/ssl The HTTPS key and certificate used by Krill
data_dir/cas The history of your CA(s) in raw JSON format
data_dir/pubd If used, the history of your Publication Server

Note: Note that old versions of Krill also used the directories data_dir/rfc8181 and data_dir/rfc6492
for storing all protocol messages exchanged between your CAs and their parent and repository. If they are still present
on your system, you can safely remove them and potentially save quite some space.

2.1.1 Archiving

Krill offers the option to archive old, less relevant, historical information related to publication. You can enable
this by setting the option archive_threshold_days in your configuration file. If set Krill will move all pub-
lication events older than the specified number of days to a subdirectory called archived under the relevant data
directory, i.e. data_dir/pubd/0/archived if you are using the Krill Publication Server and data_dir/cas/
<your-ca-name>/archived for each of your CAs.

You can set up a cronjob to delete these events once and for all, but we recommend that you save them in long term
storage if you can. The reason is that if (and only if) you have this data, you will be able to rebuild the complete Krill
state based on its audit log of events, and irrevocably prove that no changes were made to Krill other than the changes
recorded in the audit trail. We have no tooling for this yet, but we have an issue on our backlog.

7

https://github.com/NLnetLabs/krill/issues/20
https://github.com/NLnetLabs/krill/issues/331

Krill User Manual

2.2 Saving State Changes

You can skip this section if you’re not interested in all the minute details. It is intended to explain how backup and
restore works in Krill, and why a standby fail-over node can be used, but Krill’s locking and storage mechanism needs
to be changed in order to make multiple active nodes work.

State changes in Krill are tracked using events. Krill CA(s) and Publication Servers are versioned. They can only
be changed by applying an event for a specific version. An event just contains the data that needs to be changed.
Crucially, they cannot cause any side effects. As such, the overall state can always be reconstituted by applying all
past events. This concept is called event-sourcing, and in this context the CAs and Publication Servers are so-called
aggregates.

Events are not applied directly. Rather, users of Krill and background jobs will send their intent to make a change
through the API, which then translates this into a so-called command. Krill will then lock the target aggregate and
send the command to it. This locking mechanism is not aware of any clustering, and it’s a primary reason why Krill
cannot run as an active-active cluster yet.

Upon receiving a command the aggregate will do some work. In some cases a command can have a side-effect. For
example it may instruct your CA to create a new key pair, after receiving entitlements from its parent. The key pair
is random — applying a command again would result in a new random key pair. Remember that commands are not
re-applied to aggregates, only their resulting events are. Thus, in this example there would be an event caused that
contains the resulting key pair.

After receiving the command, the aggregate will return one of the following:

1. An error Usually this means that the command is not applicable to the aggregate state. For example, you may
have tried to remove a ROA which does not exist.

When Krill encounters such an error, it will store the command with some meta-information like the time
the command was issued and a summary of the error, so that it can be seen in the history. It will then
unlock the aggregate, so that the next command can be sent to it.

2. No error, zero events In this case the command turned out to be a no-op, and Krill just unlocks the aggregate.
The command sequence counter is not updated, and the command is not saved. This is used as a feature
whenever the ‘republish’ background job kicks in. A ‘republish’ command is sent, but it will only have an
actual effect if there was a need to republish — e.g. a manifest would need to be re-issued before it would
expire.

3. One or more events In this case there is a desired state change in a Krill aggregate. Krill will now apply and
persist the changes in the following order:

• Each event is stored. If an event already exists for a version, then the update is aborted. Because Krill
cannot run as a cluster, and it uses locking to ensure that updates are done in sequence, this will only
fail on the first event if a user tried to issue concurrent updates to the same CA.

• On every fifth event a snapshot of the state is saved to a new file. If this is successful then the old
snapshot (if there is one) is renamed and kept as a backup snapshot. The new snapshot is then renamed
to the ‘current’ snapshot.

• When all events are saved, the command is saved enumerating all resulting events, and including
meta-information such as the time that the time that the command was executed. And when multiple
users will be supported, this will also include who made a change.

• Finally, the version information file for the aggregate is updated to indicate its current version, and
command sequence counter.

Note: Krill will crash, by design, if there is any failure in saving any of the above files to disk. If Krill cannot persist
its state it should not try to carry on. It could lead to disjoints between in-memory and on-disk state that are impossible

8 Chapter 2. Architecture

https://github.com/NLnetLabs/krill/issues/20
https://github.com/NLnetLabs/krill/issues/294
https://github.com/NLnetLabs/krill/issues/294

Krill User Manual

to fix. Therefore, crashing and forcing an operator to look at the system is the only sensible thing Krill can now do.
Fortunately, this should not happen unless there is a serious system failure.

2.3 Loading State at Startup

Krill will rebuild its internal state whenever it starts. If it finds that there are surplus events or commands com-
pared to the latest information state for any of the aggregates it will assume that they are present because, either
Krill stopped in the middle of writing a transaction of changes to disk, or your backup was taken in the middle
of a transaction. Such surplus files are backed up to a subdirectory called surplus under the relevant data di-
rectory, i.e. data_dir/pubd/0/surplus if you are using the Krill Publication Server and data_dir/cas/
<your-ca-name>/surplus for each of your CAs.

2.4 Recover State at Startup

When Krill starts, it will try to go back to the last possible recoverable state if:

• it cannot rebuild its state at startup due to data corruption

• the environment variable: KRILL_FORCE_RECOVER is set

• the configuration file contains always_recover_data = true

Under normal circumstances performing this recovery will not be necessary. It can also take significant time due to all
the checks performed. So, we do not recommend forcing recovery when there is no data corruption.

Krill will try the following checks and recovery attempts:

• Verify each recorded command and its effects (events) in their historical order.

• If any command or event file is corrupt it will be moved to a subdirectory called corrupt under the relevant
data directory, and all subsequent commands and events will be moved to a subdirectory called surplus under
the relevant data directory.

• Verify that each snapshot file can be parsed. If it can’t then this file is moved to the relevant corrupt sub-
directory.

• If a snapshot file could not be parsed, try to parse the backup snapshot. If this file can’t be parsed, move it to the
relevant corrupt sub-directory.

• Try to rebuild the state to the last recoverable state, i.e. the last known good event. Note that if this pre-dates the
available snapshots, or, if no snapshots are available this means that Krill will try to rebuild state by replaying
all events. If you had enabled archiving of events, it will not be able rebuild state.

• If rebuilding state failed, Krill will now exit with an error.

Note that in case of data corruption Krill may be able to fall back to an earlier recoverable state, but this state may be
far in the past. You should always verify your ROAs and/or delegations to child CAs in such cases.

Of course, it’s best to avoid data corruption in the first place. Please monitor available disk space, and make regular
backups.

2.3. Loading State at Startup 9

Krill User Manual

2.5 Backup and Restore

Backing up Krill is as simple as backing up its data directory. There is no need to stop Krill during the backup. To
restore put back your data directory and make sure that you refer to it in the configuration file that you use for your
Krill instance. As described above, if Krill finds that the backup contains an incomplete transaction, it will fall back
to the state prior to it.

Warning: You may want to encrypt your backup, because the data_dir/ssl directory contains your private
keys in clear text. Encrypting your backup will help protect these, but of course also implies that you can only
restore if you have the ability to decrypt.

2.6 Krill Upgrades

All Krill versions 0.4.1 and upwards can be automatically upgraded to the current version. Any required data migra-
tions will be performed automatically. To do so we recommend that you:

• backup your krill data directories

• install the new version of Krill

• stop the running Krill instance

• start Krill again, using the new binary, and the same configuration

If you want to test if data migrations will work correctly for your data, you can do the following:

• copy your data directory to another system

• set the env variable KRILL_UPGRADE_ONLY=1

• create a configuration file, and set data_dir=/path/to/your/copy

• start up Krill

Krill will then perform the data migrations, rebuild its state, and then exit before doing anything else.

Note: Downgrading Krill data is not supported. Downgrading can only be achieved by installing a previous version
of Krill and restoring a backup that matches this version.

2.7 Proxy and HTTPS

Krill uses HTTPS and refuses to do plain HTTP. By default Krill will generate a 2048 bit RSA key and self-signed
certificate in /ssl in the data directory when it is first started. Replacing the self-signed certificate with a TLS
certificate issued by a CA works, but has not been tested extensively. By default Krill will only be available under
https://localhost:3000.

If you need to access the Krill UI or API (also used by the CLI) from another machine you can use use a proxy server
such as NGINX or Apache to proxy requests to Krill. This proxy can then also use a proper HTTPS certificate and
production grade TLS support.

10 Chapter 2. Architecture

Krill User Manual

2.7.1 Proxy Krill UI

The Krill UI and assets are hosted directly under the base path /. So, in order to proxy to the Krill UI you should
proxy ALL requests under / to the Krill back-end.

Note that although the UI and API are protected by a token, you should consider further restrictions in your proxy
setup, such as restrictions on source IP or adding your own authentication.

2.7.2 Proxy Krill as Parent

If you delegated resources to child CAs then you will need to ensure that these children can reach your Krill. Child
requests for resource certificates are directed to the /rfc6492 directory under the service_uri that you defined
in your configuration file.

Note that contrary to the UI you should not add any additional authentication mechanisms to this location. RFC 6492
uses cryptographically signed messages sent over HTTP and is secure. However, verifying messages and signing
responses can be computationally heavy, so if you know the source IP addresses of your child CAs, you may wish to
restrict access based on this.

2.7.3 Proxy Krill as Publication Server

If you are running Krill as a Publication Server, then you should read here how to do the Publication Server specific
set up.

Warning: We recommend that you do not make Krill available to the public internet unless you really need
remote access to the UI or API, or you are serving as parent CA or Publication Server for other CAs.

2.7. Proxy and HTTPS 11

https://tools.ietf.org/html/rfc6492.html

Krill User Manual

12 Chapter 2. Architecture

CHAPTER

THREE

INSTALL AND RUN

Getting started with Krill is quite easy by either installing a Debian and Ubuntu package, building from Cargo or using
Docker. In case you intend to serve your RPKI certificate and ROAs to the world yourself or you want to offer this as
a service to others, you will also need to have a public Rsyncd and HTTPS web server available.

3.1 Installing with Debian and Ubuntu Packages

Pre-built Debian/Ubuntu packages are available for recent operating system versions on x86_64 platforms. These can
be installed using the standard apt, apt-get and dpkg commands as usual.

Unlike with installing with Cargo there is no need to have Rust or a C toolchain installed. Additionally, the packages
come with systemd service file to easily start and stop the Krill daemon.

Note: For the oldest platforms, Ubuntu 16.04 LTS and Debian 9, the packaged krill binary is statically linked with
OpenSSL 1.1.0 as this is the minimum version required by Krill and is higher than available in the official package
repositories for those platforms.

To install Krill from the NLnet Labs package repository:

1. Run cargo uninstall krill if you previously installed Krill with Cargo.

2. Add the line below that corresponds to your operating system to /etc/apt/sources.list or /etc/
apt/sources.list.d/:

deb [arch=amd64] https://packages.nlnetlabs.nl/linux/debian/ stretch main
deb [arch=amd64] https://packages.nlnetlabs.nl/linux/debian/ buster main
deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ xenial main
deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ bionic main
deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ focal main

2. Add the repository signing key to the listed of trusted keys:

wget -qO- https://packages.nlnetlabs.nl/aptkey.asc | sudo apt-key add -

3. Install Krill using sudo apt-get update and sudo apt-get install krill.

4. Review the generated configuration file at /etc/krill.conf. Pay particular attention to the
service_uri and auth_token settings.

5. Once happy with the settings use sudo systemctl enable --now krill to instruct systemd to enable
the Krill service at boot and to start it immediately.

13

Krill User Manual

Tip: The configuration file was generated for you using the krillc config simple command. You can find a
full example configuration file with defaults in the GitHub repository.

The krill daemon runs as user krill and stores its data in /var/lib/krill. You can manage the Krill daemon
using the following commands:

• Review the Krill logs with journalctl -u krill, or view just the most recent entries with systemctl
status krill.

• Stop Krill with sudo systemctl stop krill.

• Learn more about Krill using man krill and man krillc.

• Upgrade Krill by running apt-get update and apt-get install krill.

3.2 Installing with Cargo

There are three things you need for Krill: Rust, the C toolchain and OpenSSL. You can install Krill on any operating
system where you can fulfil these requirements, but we will assume that you will run this on a UNIX-like OS.

3.2.1 Rust

The Rust compiler runs on, and compiles to, a great number of platforms, though not all of them are equally supported.
The official Rust Platform Support page provides an overview of the various support levels.

While some system distributions include Rust as system packages, Krill relies on a relatively new version of Rust,
currently 1.42 or newer. We therefore suggest to use the canonical Rust installation via a tool called rustup.

To install rustup and Rust, simply do:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Alternatively, visit the official Rust website for other installation methods.

You can update your Rust installation later by running:

rustup update

For some platforms, rustup cannot provide binary releases to install directly. The Rust Platform Support page
lists several platforms where official binary releases are not available, but Rust is still guaranteed to build. For these
platforms, automated tests are not run so it’s not guaranteed to produce a working build, but they often work to quite
a good degree.

One such example that is especially relevant for the routing community is OpenBSD. On this platform, patches are
required to get Rust running correctly, but these are well maintained and offer the latest version of Rust quite quickly.

Rust can be installed on OpenBSD by running:

pkg_add rust

Another example where the standard installation method does not work is CentOS 6, where you will end up with a
long list of error messages about missing assembler instructions. This is because the assembler shipped with CentOS
6 is too old.

You can get the necessary version by installing the Developer Toolset 6 from the Software Collections repository. On
a virgin system, you can install Rust using these steps:

14 Chapter 3. Install and Run

https://github.com/NLnetLabs/krill/blob/master/defaults/krill.conf
https://forge.rust-lang.org/platform-support.html
https://www.rust-lang.org/tools/install
https://forge.rust-lang.org/platform-support.html
https://github.com/openbsd/ports/tree/master/lang/rust/patches
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/
https://wiki.centos.org/AdditionalResources/Repositories/SCL

Krill User Manual

sudo yum install centos-release-scl
sudo yum install devtoolset-6
scl enable devtoolset-6 bash
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env

3.2.2 C Toolchain

Some of the libraries Krill depends on require a C toolchain to be present. Your system probably has some easy way to
install the minimum set of packages to build from C sources. For example, apt install build-essential
will install everything you need on Debian/Ubuntu.

If you are unsure, try to run cc on a command line and if there’s a complaint about missing input files, you are
probably good to go.

3.2.3 OpenSSL

Your system will likely have a package manager that will allow you to install OpenSSL in a few easy steps. For Krill,
you will need libssl-dev, sometimes called openssl-dev. On Debian-like Linux distributions, this should be
as simple as running:

apt install libssl-dev openssl pkg-config

3.2.4 Building

The easiest way to get Krill is to leave it to cargo by saying:

cargo install --locked krill

If you want to update an installed version, you run the same command but add the -f flag, a.k.a. force, to approve
overwriting the installed version.

The command will build Krill and install it in the same directory that cargo itself lives in, likely $HOME/.cargo/
bin. This means Krill will be in your path, too.

3.2.5 Generate Configuration File

After the installation has completed, there are just two things you need to configure before you can start using Krill.
First, you will need a data directory, which will store everything Krill needs to run. Secondly, you will need to create
a basic configuration file, specifying a secret token and the location of your data directory.

The first step is to choose where your data directory is going to live and to create it. In this example we are simply
creating it in our home directory.

mkdir ~/data

Krill can generate a basic configuration file for you. We are going to specify the two required directives, a secret token
and the path to the data directory, and then store it in this directory.

krillc config simple --token correct-horse-battery-staple --data ~/data/ > ~/
→˓data/krill.conf

3.2. Installing with Cargo 15

Krill User Manual

Note: If you wish to run a self-hosted RPKI repository with Krill you will need to use a different krillc config
command. See Running a Publication Server for more details.

You can find a full example configuration file with defaults in the GitHub repository.

3.2.6 Start and Stop the Daemon

There is currently no standard script to start and stop Krill. You could use the following example script to start Krill.
Make sure to update the DATA_DIR variable to your real data directory, and make sure you saved your krill.conf
file there.

#!/bin/bash
KRILL="krill"
DATA_DIR="/path/to/data"
KRILL_PID="$DATA_DIR/krill.pid"
CONF="$DATA_DIR/krill.conf"
SCRIPT_OUT="$DATA_DIR/krill.log"

nohup $KRILL -c $CONF >$SCRIPT_OUT 2>&1 &
echo $! > $KRILL_PID

You can use the following sample script to stop Krill:

#!/bin/bash
DATA_DIR="/path/to/data"
KRILL_PID="$DATA_DIR/krill.pid"

kill `cat $KRILL_PID`

16 Chapter 3. Install and Run

https://github.com/NLnetLabs/krill/blob/master/defaults/krill.conf

CHAPTER

FOUR

GET STARTED WITH KRILL

Before you can start managing your own Route Origin Authorisations (ROAs) you need to do a one time setup where
you:

• create your Certificate Authority (CA)

• connect to a Publication Server

• connect to a Parent CA (typically a Regional or National Internet Registry)

This can be easily achieved using the user interface. Connecting to the Publication Server and Parent CA is done by
exchanging a couple of XML files. After this initial setup, and you can simply manage your ROAs.

If you just want to try out Krill (or a new version) you can use the testbed environment provided by NLnet Labs for
this.

If you are using the defaults you can access the user interface in a browser on the server running Krill at https://
localhost:3000. By default, Krill generates a self-signed TLS certificate, so you will have to accept the security
warning that your browser will give you.

If you want to access the UI, or use the CLI, from another computer, you can either set up a reverse proxy on your
server running Krill, or set up local port forwarding with SSH, for example:

ssh -L 3000:localhost:3000 user@krillserver.example.net

Here we will guide you through the set up process using the UI, but we will also link to the relevant subcommands of
the command line interface (CLI)

4.1 Login

The login will ask you to enter the secret token you configured for Krill.

If you are using the CLI you will need to specify the token using the --token option. Because the CLI does not have
a session, you will need to specify this for each command. Alternatively, you can set the the KRILL_CLI_TOKEN
environment variable.

17

https://blog.nlnetlabs.nl/testing----123-delegated-rpki/

Krill User Manual

Fig. 1: Enter your secret token to access Krill

18 Chapter 4. Get Started with Krill

Krill User Manual

4.2 Create your Certificate Authority

Next, you will see the Welcome screen where you can create your Certificate Authority (CA). It will be used to
configure delegated RPKI with one or multiple parent CAs, usually your Regional or National Internet Registry.

The handle you select is not published in the RPKI but used as identification to parent and child CAs you interact with.
Please choose a handle that helps others recognise your organisation. Once set, the handle cannot be changed.

Fig. 2: Enter a handle for your Certification Authority

If you are using the CLI you can create your CA using the subcommand krillc add.

4.3 RIR and NIR Interactions

If you hold resources in one or more RIR or NIR regions, you will need to have access to the respective member
portals and the permission to configure delegated RPKI.

AFRINIC https://my.afrinic.net

APNIC https://myapnic.net

ARIN https://account.arin.net

LACNIC https://milacnic.lacnic.net

RIPE NCC https://my.ripe.net

4.2. Create your Certificate Authority 19

https://my.afrinic.net
https://myapnic.net
https://account.arin.net
https://milacnic.lacnic.net
https://my.ripe.net

Krill User Manual

Most RIRs have a few considerations to keep in mind.

4.3.1 AFRINIC

AFRINIC have delegated RPKI available in their test environment, but it’s not operational yet. Work to bring it to
production is planned for 2021.

4.3.2 APNIC

If you are already using the hosted RPKI service provided by APNIC and you would like to switch to delegated RPKI,
there is currently no option for this with MyAPNIC. Please open a ticket with the APNIC help desk to resolve this.

Please note that APNIC offers RPKI publication as a service upon request. It is highly recommended to make use of
this, as it relieves you of the need to run a highly available repository yourself.

4.3.3 LACNIC

Although LACNIC offers delegated RPKI, it is not possible to configure this in their member portal yet. While the
procedures are still being defined, please open a ticket via hostmaster@lacnic.net to get started.

4.3.4 RIPE NCC

When you are a RIPE NCC member who does not have RPKI configured, you will be presented with a choice if you
would like to use hosted or non-hosted RPKI.

Fig. 3: RIPE NCC RPKI setup screen

20 Chapter 4. Get Started with Krill

mailto:hostmaster@lacnic.net

Krill User Manual

If you want to set up delegated RPKI with Krill, you will have to choose non-hosted. If you are already using the
hosted service and you would like to switch, then there is currently no option for that in the RIPE NCC portal.

Make a note of the ROAs you created and then send an email to rpki@ripe.net requesting your hosted CA to be deleted,
making sure to mention your registration id. After deletion, you will land on the setup screen from where you can
choose non-hosted RPKI.

4.4 Hosted Publication Server

Your RIR or NIR may also provide an RPKI publication server. You are free to publish your certificate and ROAs
anywhere you like, so a third party may provide an RPKI publication server as well. Using an RPKI publication server
relieves you of the responsibility to keep a public rsync and web server running at all times to make your certificate
and ROAs available to the world.

Of the five RIRs, only APNIC currently offers RPKI publication as a service for their members, upon request. Most
other RIRs have it on their roadmap. NIC.br, the Brazilian NIR, provides an RPKI repository server for their members
as well. This means that in most cases you will have to publish your certificate and ROAs yourself, as described in the
Running a Publication Server section.

4.5 Repository Setup

Before Krill can request a certificate from a parent CA, it will need to know where it will publish. You can add a parent
before configuring a repository for your CA, but in that case Krill will postpone requesting a certificate until you have
done so.

In order to register your CA as a publisher, you will need to copy the RFC 8183 Publisher Request XML and supply it
to your Publication Server. You can retrieve this file with the CLI subcommand krillc repo request, or you can simply
use the UI:

Your publication server provider will give you a repository response XML. You can use the CLI subcommand krillc
repo update to tell add this configuration to your CA, or you can simply use the UI:

4.6 Parent Setup

After successfully configuring the repository, the next step is to configure your parent CA. You will need to present
your CA’s RFC 8183 child request XML file to your parent. You can get this file using the CLI subcommand krillc
parents request, or you can simply use the UI:

Your RIR or NIR will provide you with a parent response XML. You can use the CLI subcommand krillc parents add
for this, or you can simply paste or upload it using the UI:

After a few moments your parent will process your entitled resources and you will see them appearing on your certifi-
cate which is visible in the ROAs tab. Now you can start creating ROAs.

4.4. Hosted Publication Server 21

mailto:rpki@ripe.net
https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

Fig. 4: Copy the publisher request XML or download the file

22 Chapter 4. Get Started with Krill

Krill User Manual

Fig. 5: Paste or upload the repository response XML

4.6. Parent Setup 23

Krill User Manual

Fig. 6: Copy the child request XML or download the file

24 Chapter 4. Get Started with Krill

Krill User Manual

Fig. 7: Paste or upload the parent response XML

4.6. Parent Setup 25

Krill User Manual

26 Chapter 4. Get Started with Krill

CHAPTER

FIVE

MANAGE ROAS

Once you have successfully set up the parent and repository, you are now running delegated RPKI. You can now start
creating ROAs.

5.1 Show BGP Info

Krill automatically downloads BGP announcement information from the RIPE NCC Routing Information Service
(RIS) and uses this to analyse the known BGP announcements for the address space on your resource certificate(s).
This allows Krill to show the RPKI validation status of your announcements, warn about possible issues, and offer
suggestions on ROAs you may want to create or remove.

If you just set up your Krill instance all your announcements will have the status NOT FOUND, as you have not created
any ROAs covering them yet.

Once you start authorising BGP announcements made with your IP prefixes, Krill recognises the following ‘States’ in
its analysis:

27

Krill User Manual

Fig. 1: When you first start, all your announcements are ‘NOT FOUND’

28 Chapter 5. Manage ROAs

Krill User Manual

State Explanation
NOT FOUND This announcement is not covered by any of your ROAs
INVALID ASN

The prefix for this announcement is covered by one or
more of your ROAs.
However, none of those ROAs allow announcements of
this prefix by this ASN.

INVALID LENGTH

The ASN for this announcement is covered by one or
more of your ROAs.
However, the prefix is more specific than allowed.

SEEN

This is a ROA you created which allows at least one
known BGP announcement.
Note it may also disallow one or more other
announcements. You can show details
if you click on the ‘>’ icon.

TOO PERMISSIVE

This ROA uses the max length field to allow multiple
announcements, but
Krill does not see all most specific announcements in
its BGP information.

REDUNDANT

This is a ROA you created which is included in full by
at least one other ROA
you created. I.e. you have a ROA for the same ASN,
covering this prefix and
including the maximum length.

NOT SEEN

This is a ROA you created but it does not cover any
known announcements. This
may be a ROA you created for a backup or planned
announcement. On the other
hand, this could also be a stale ROA in which case it is
better to remove it.

DISALLOWING

This is a ROA for which no allowed announcements
are seen, yet it disallows one
or more announcements. If this is done on purpose it
may be better to create
a ROA for ASN 0 instead.

AS0

This is a ROA you created for a prefix with ASN 0.
Since ASN 0 cannot occur
in BGP such ROAs are effectively used to disallow
announcements of prefixes
on the global BGP table.

REDUNDANT (AS0)

An AS0 ROA is considered redundant in case you have
at least one ROA covering
the entire prefix for a real ASN. In such cases this ROA
does not provide any
further protection on top of that existing ROA.

5.1. Show BGP Info 29

Krill User Manual

If you disable the Show BGP Info toggle, Krill will just show you your plain ROAs. You can also disable downloading
the RIS dump files altogether if you set the following directive in your krill.conf file:

bgp_risdumps_enabled = false

5.2 ROA Suggestions

Warning: You should always verify the suggestions done by Krill. Krill bases its analysis on information collected
by the RIPE NCC Routing Information Service (RIS) and saved in aggregated dumps every 8 hours. This means the
announcements that Krill sees may be outdated. More importantly they may include announcements by others that
you do NOT wish to allow. In addition, you may not see your own announcements if you inadvertently invalidated
them, because such announcements are often rejected and therefore may not reach the RIS Route Collectors.

We plan to add support to use other data sources in future, which will allow you to inform Krill about the an-
nouncements that you do on your own eBGP sessions.

If you click Analyse my ROAs under the table in the ROAs tab, Krill will suggest the following changes for the
following ‘State’ values:

30 Chapter 5. Manage ROAs

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
http://www.ris.ripe.net/dumps/

Krill User Manual

State Add/Remove Notes
NOT FOUND Add
INVALID ASN Add

Be careful when adding a ROA for
a new ASN. The information
is based on what is seen in BGP, but
this may include
malicious or accidental hijacks that
you do NOT wish to
allow.

NOTE: Krill will not suggest to
allow announcements for a new
ASN if you created an AS0 ROA
for the prefix.

INVALID LENGTH Add

If you are sure that this
announcement is valid, then you
should
create a ROA for it. However, there
is a (remote) chance that
this is a malicious hijack where
your ASN was prepended. In
such cases you should of course
NOT allow it.

TOO PERMISSIVE BOTH

Krill will suggest to remove the
permissive ROA and replace it
with ROAs for all specific
announcements presently seen in
BGP.
This is inline with
recommendations in this draft in
the IETF.
However, if you need to
pre-provision specific
announcements
from your ASN, e.g. for anti DDoS
purposes, then you may wish
to keep the permissive ROA as is.

DISALLOWING Remove

If you want to create a ROA to
disallow announcements then it
may be better to create an AS0
ROA instead.

NOT SEEN Remove Keep the ROA if it is for a planned
or backup announcement.

REDUNDANT Remove
5.2. ROA Suggestions 31

https://tools.ietf.org/html/draft-ietf-sidrops-rpkimaxlen
https://tools.ietf.org/html/draft-ietf-sidrops-rpkimaxlen

Krill User Manual

5.3 Add a ROA

Click the Add ROA button, then fill in the authorised ASN and one of your prefixes in the form. The maximum prefix
length will automatically match the prefix you entered to follow best operational practices, but you can change it as
desired.

Fig. 2: Adding a new ROA

If you prefer to use the CLI then you can manage ROAs using the subcommand krillc roas.

32 Chapter 5. Manage ROAs

CHAPTER

SIX

USING THE CLI OR API

6.1 Introduction

Every function of Krill can be controlled from the command line interface (CLI). The Krill CLI is a wrapper around
the API which is based on JSON over HTTPS.

We will document all current functions below, providing examples of both the CLI and API.

Note that you can use the CLI from another machine, but then you will need to set up a proxy server in front of Krill
and make sure that it has a real TLS certificate.

To use the CLI you need to invoke krillc followed by one or more subcommands, and some arguments. Help is
built-in:

USAGE:
krillc <subcommand..> [FLAGS] [OPTIONS]

FLAGS:
--api Only show the API call and exit. Or set env: KRILL_CLI_API=1

-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-c, --ca <name> The name of the CA you wish to control. Or set env: KRILL_

→˓CLI_MY_CA
-f, --format <type> Report format: none|json|text (default). Or set env:

→˓KRILL_CLI_FORMAT
-s, --server <URI> The full URI to the krill server. Or set env: KRILL_CLI_

→˓SERVER
-t, --token <string> The secret token for the krill server. Or set env: KRILL_

→˓CLI_TOKEN

6.2 Setting Defaults

As noted in the OPTIONS help text above you can set default values via environment variables for the most common
arguments that need to be supplied to krillc subcommands. When setting environment variables note the following
requirements:

• KRILL_CLI_SERVER must be in the form https://<host:port>/.

• KRILL_CLI_MY_CA must consist only of alphanumeric characters, dashes and underscores, i.e.
a-zA-Z0-9_.

For example:

33

Krill User Manual

export KRILL_CLI_TOKEN="correct-horse-battery-staple"
export KRILL_CLI_MY_CA="Acme-Corp-Intl"

If you do use the command line argument equivalents, you will override whatever value you set in the ENV. Krill will
give you a friendly error message if you did not set the applicable ENV variable, and don’t include the command line
argument equivalent.

6.3 Explore the API

The reference below documents the available krillc subcommands and the equivalent API functions by example.

You can also explore the CLI and API yourself:

• Each subcommand can be prefixed with help to access the CLI built-in help

• You can always use --api argument to make the CLI print out the API call that it would do, without actually
sending it to the server.

• You can use --format=json to have the API print out the JSON returned by the server without reformatting
or filtering information. Of course, be careful if you use this option for subcommands with side-effects, such as
krillc delete --ca <ca>

If you want a to have a safe sandbox environment to test your Krill CA and really explore the API, then we recommend
that you set up a local Krill testbed as described in doc_krill_testbed.

Tip: Click subcommand names in this section to jump to its detailed description.

Subcommands for managing your Krill server:

config Creates a configuration file for krill and prints it to STDOUT
health Perform an authenticated health check
info Show server info

Subcommands for adding / removing CA instances in your Krill server:

add Add a new CA
delete Delete a CA and let it withdraw its objects and request

→˓revocation. WARNING: Irreversible!
list List the current CAs

Subcommands for initialising a CA:

parents Manage parents for a CA.
repo Manage the repository for a CA.

Subcommands for showing the details of a CA:

show Show details of a CA.
issues Show issues for a CA
history Show the history of a CA

Manage ROAs:

roas Manage ROAs for a CA.

Other operations:

bulk Manually trigger refresh/republish/resync for all CAs
children Manage children for a CA
keyroll Perform a manual key rollover for a CA

34 Chapter 6. Using the CLI or API

Krill User Manual

6.4 krillc config

This subcommand is implemented on the CLI only and is intended to help generate a configuration file which can be
used for your Krill server.

We currently support two subcommands for this: krillc config simple and krillc config user. The first can be used to
generate general server configuration. The second can be used to generate user (id) entries to use if you want to have
multiple local users access the Krill UI by their own name and password.

6.5 krillc health

Perform an authenticated health check. Verifies that the specified Krill server can be connected to, is able to verify the
specified token and is, at least thus far, healthy. This does NOT check whether your CAs have any issues, please have
a look at the issues subcommand for this.

Can be used in automation scripts by checking the exit code:

Exit Code Meaning
0 the Krill server appears to be healthy.
non-zero incorrect server URI, token, connection failure or server error.

Example CLI:

$ krillc health
$ echo $?
0

Example API:

$ krillc health --api
GET:

https://localhost:3000/api/v1/authorized
Headers:

Authorization: Bearer secret

If you need to do an unauthorized health check, then you can just call the following endpoint instead. This will always
return a 200 OK response if the server is running:

GET:
https://localhost:3000/health

6.4. krillc config 35

Krill User Manual

6.6 krillc info

Show server info. Prints the version of the Krill server and the date and time that it was last started, e.g.:

Example CLI:

$ krillc info
Version: 0.9.0
Started: 2021-04-07T12:36:00+00:00

Example API call:

$ krillc info --api
GET:
https://localhost:3000/stats/info

Headers:
Authorization: Bearer secret

Example API resonse:

{
"version": "0.9.0",
"started": 1617798960

}

6.7 krillc add

Adds a new CA.

When adding a CA you need to choose a handle, essentially just a name. The term “handle” comes from RFC 8183
and is used in the communication protocol between parent and child CAs, as well as CAs and publication servers. The
handle may consist of alphanumeric characters, dashes and underscores, i.e. a-zA-Z0-9_.

The handle you select is not published in the RPKI but used as identification to parent and child CAs you interact with.
You should choose a handle that helps others recognise your organisation. Once set, the handle cannot be be changed
as it would interfere with the communication between parent and child CAs, as well as the publication repository.

When a CA has been added, it is registered to publish locally in the Krill instance where it exists, but other than that it
has no configuration yet. In order to do anything useful with a CA you will first have to add at least one parent to it,
followed by some Route Origin Authorisations and/or child CAs.

Example CLI:

$ krillc add --ca newca

Example API:

$ krillc add --ca newca --api
POST:

https://localhost:3000/api/v1/cas
Headers:

content-type: application/json
Authorization: Bearer secret

Body:

(continues on next page)

36 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

{
"handle": "newca"

}

The API response is an empty 200 OK response, unless an issue occurred - e.g. the handle was already in use:

{"label":"ca-duplicate","msg":"CA 'newca' was already initialised","args":{"ca":"newca
→˓"}}

6.8 krillc delete

Deletes a CA in your Krill server. The CA will try (best effort) to request revocation of its current certificates from its
parents, and withdraw its objects from its repository.

Warning: This action is irreversible!

Example CLI:

$ krillc delete --ca ca

Example API:

$ krillc delete --ca ca --api
DELETE:

https://localhost:3000/api/v1/cas/ca
Headers:

Authorization: Bearer secret

The API response is an empty 200 OK response, unless an issue occurred - e.g. the CA is not known:

{"label":"ca-unknown","msg":"CA 'unknown' is unknown","args":{"ca":"unknown"}}

6.9 krillc list

List the current CAs.

Example CLI:

$ krillc list
testbed
ta

Example API:

6.8. krillc delete 37

Krill User Manual

$ krillc list --api
GET:

https://localhost:3000/api/v1/cas
Headers:

Authorization: Bearer secret

Example API response:

{
"cas": [
{

"handle": "testbed"
},
{

"handle": "ta"
}

]
}

6.10 krillc parents

Manage parents for a CA. You will need to add at least one parent, and a repository (see below), before your CA can
request any resource certificate.

The Krill CLI and API have a number of subcommands to manage CA parents:

request Show RFC8183 Publisher Request XML
add Add a parent to this CA
statuses Show overview of all parent statuses of a CA
contact Show contact information for a parent of this CA
remove Remove an existing parent from this CA

6.11 krillc parents request

Before you can add a parent to any CA, you will need to present an RFC 8183 Publisher Request XML to that parent.
Their response XML can then be used to add them as a parent.

For more information on how this is done through the UI see: Parent Setup.

Example CLI:

$ krillc parents request --ca newca
<child_request xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1" child_
→˓handle="newca">
<child_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/
→˓rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=</child_
→˓bpki_ta>

(continues on next page)

38 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

</child_request>

The API can be called to return the Publisher Request in XML format if you use the following path scheme:

GET:
https://localhost:3000/api/v1/cas/newca/id/child_request.xml

Headers:
Authorization: Bearer secret

The API also supports a JSON equivalent of the response if the child_request.json is requested instead:

GET:
https://localhost:3000/api/v1/cas/newca/id/child_request.json

Headers:
Authorization: Bearer secret

6.12 krillc parents add

Add a parent to a CA. Or update the information for an existing parent.

In order to add a parent to a CA you will need to present the RFC 8183 Parent Response. You will usually get this
response in the standard RFC XML format. The Krill API supports submitting this file in its plain XML form, in
which case the local name for the parent - i.e. the name that your CA will use for it in the presentation to you - will be
derived from the path, or if it is not supplied there from the parent_handle in the XML.

The API also supports a JSON format where the parent local handle can be explicitly specified. If you use the CLI
then it will expect that you provide this local handle, parse a supplied XML file, and then combine both in a JSON
body sent to the server:

$ krillc parents add --parent my_parent --response ./data/new-ca-parent-response.xml -
→˓-api
POST:

https://localhost:3000/api/v1/cas/ca/parents
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"handle": "my_parent",
"contact": {
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",

(continues on next page)

6.12. krillc parents add 39

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://localhost:3000/rfc6492/testbed"

}
}

Note that whichever handle you choose, your CA will use the handles that the parent response included for itself and
for your CA in its communication with this parent. I.e. you may want to inspect the response and use the same handle
for the parent (parent_handle attribute), and do not be surprised or alarmed if the parent refers to your ca (child_handle
attribute) by some seemingly random name. Some parents do this to ensure uniqueness.

In case you have multiple parents you may want to refer to them by names that make sense in your context, or to avoid
name collisions in case they all like to go by the same the name.

In order to specify the parent ‘handle’ on the path it can simply be added as a path parameter in the call. This is
primarily intended for XML in which case the path argument will be taken from here. If you submit a JSON body and
specify a the handle as path parameter, then Krill will return an error in case the handles do not match.

Important: The API path for ADDING a parent is the same as the API path for updating a parent. This means that
adding the same parent multiple times is idempotent. If you are unsure about The parents that your CA currently has,
then have a look at the show subcommand.

6.13 krillc parents statuses

Show the current status between a CA and all of its parents.

Warning: This command will return an empty result if you did not yet configure a repository for the CA. This is
because Krill will not even attempt to contact parent CAs until it knows which URIs to use in certificate requests.

Example CLI:

$ krillc parents statuses --ca newca
Parent: my_parent
URI: https://localhost:3000/rfc8181/localname/
Status: success
Last contacted: 2021-04-08T11:20:00+00:00
Next contact on or before: 2021-04-08T11:30:00+00:00
Resource Entitlements: asn: AS65000, v4: 10.0.0.0/8, v6: 2001:db8::/32

resource class: 0
issuing cert uri: rsync://localhost/repo/ta/0/

→˓0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.cer
received certificate(s):
published at: rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer
resources: asn: AS65000, v4: 10.0.0.0/8, v6: 2001:db8::/32
cert PEM:

-----BEGIN CERTIFICATE-----
MIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp

(continues on next page)

40 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

-----END CERTIFICATE-----

Note that in case there are any issues, i.e. the status is “failure” then Krill will keep trying to resynchronise the CA
with this parent automatically. There is usually no need to trigger this manually before the next planned contact, but
you can use krillc bulk refresh if you are debugging an issue.

The JSON response returned by the server contains some additional information, in particular about the certificates
used by parent CAs to sign the certificates of your CA:

{
"my_parent": {
"last_exchange": {

"timestamp": 1617881400,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"next_exchange_before": 1617882000,
"all_resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"entitlements": {

"0": {
"parent_cert": {
"uri": "rsync://localhost/repo/ta/0/

→˓0BA5C132B94891CB2D3A89EDE12F01ACA4BCD3DC.cer",
"cert_pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIHKDCCBhCgAwIBAgIUAgyEh9bfPbsXmR1LTAPsL045+tYwDQYJKoZIhvcNAQELBQAwggItMYICKTCCAiUGA1UEAxOCAhwzMDgyMDEwQTAyODIwMTAxMDBEODAxQzQzQ0U4NkYyQjI5MEM1QUVENEE0QjAxMTIwMjNBMjQzRTgzQjkzMkUyOTREMTc0Nzk5MTFFNUU5QTEwNURFREEzN0ZBQkEwNDFFRjYwRjA2QjE5NDAxMTIyMzY0QkI4RjYwRTQ1OUQ3RDYxM0UzNzQ1NzI1MkZDQjk3QUVBNzBGM0YxREI2NzIyQjkzNEIxREVBNTBGMDM2Q0FEOTc3QTBGMjhBNTA4QzY4NjM2OEI3QzQ1Qzc4MERGREZFQkNCNUU4MTBCODk0QkRFMzM5ODNCMjI1RjM5RDJCQTRGMzdEOUI5MjU2MjZFMkUyN0Y1RUJGRDJGMzc3MzY2MTEyREExNzdFQUY4RDdDMTY3NDQwNTgxQkMzNjY4N0Y2MjM3MkZGRDNCQ0NCODlCRjNDQkJBNzJBN0U0NEEwNkZDMUM1RDMwRUU2ODYxMjZCNjhEOENFRDczQkJFREUxN0M5RTJDMTNDRDIyNTYzMzI0NzgwMjVFMUYyMTdEMEREMzI2MzhDRDU1OENEMzZBRjcxMTlDOTJDQ0JFMUE0M0VGRjAyMDFEQjdGRTY4OTZCQzFGNkMwNzZFN0JGN0ZDNzAxRTc2NTVFMENBQ0I4RDk5OTlERkNBMzc2NkEzMkMzRUFCQTVGMTczMTlDQTg5QUZCNDlEQkU3MTZDNjYwMzAyMDMwMTAwMDEwHhcNMjEwMzI5MDc1ODQ2WhcNMjIwMzI4MDgwMzQ2WjAzMTEwLwYDVQQDEygwQkE1QzEzMkI5NDg5MUNCMkQzQTg5RURFMTJGMDFBQ0E0QkNEM0RDMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArKUiUmy4gbuaafgIP/
→˓q4q9w/gwwsAjoIP+cTm0FSmqhvqsc1GVI4DQ4mspjZ+O7esFqQywmcnU9MphnGq4EJwYKqT417fU8OQj/
→˓WbiCfFhnTrVTiz/LdLdDB4+VaypGfDwPuHb8pavj2dysKiGjLcF8zdon7a/
→˓xErHqOdetKlbY20TlvVvmLUeVVKfcnDkT8nsu2k+P+5BHBrb6oQoG4IhZ/w5n65m/
→˓ozLsq7pfLrsLgFe2b4zTXhu8KdJ/W1vsshM73jkpUdkvKxif6+H4mBrlMnWg7Jo0bRuff/
→˓C0dOAWdiPMXUs53Nw3+SBUjRxhXVWdbcHflkje58pcMkGKSBwIDAQABo4ICNjCCAjIwDwYDVR0TAQH/
→˓BAUwAwEB/zAdBgNVHQ4EFgQUC6XBMrlIkcstOont4S8BrKS809wwHwYDVR0jBBgwFoAUS9B/
→˓WEM89XrPSCIpOOkwBxZdNKQwDgYDVR0PAQH/
→˓BAQDAgEGMFkGA1UdHwRSMFAwTqBMoEqGSHJzeW5jOi8vbG9jYWxob3N0L3JlcG8vdGEvMC80QkQwN0Y1ODQzM0NGNTdBQ0Y0ODIyMjkzOEU5MzAwNzE2NUQzNEE0LmNybDA3BggrBgEFBQcBAQQrMCkwJwYIKwYBBQUHMAKGG3JzeW5jOi8vbG9jYWxob3N0L3RhL3RhLmNlcjCB1AYIKwYBBQUHAQsEgccwgcQwLQYIKwYBBQUHMAWGIXJzeW5jOi8vbG9jYWxob3N0L3JlcG8vdGVzdGJlZC8wLzBZBggrBgEFBQcwCoZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5tZnQwOAYIKwYBBQUHMA2GLGh0dHBzOi8vbG9jYWxob3N0OjMwMDAvcnJkcC9ub3RpZmljYXRpb24ueG1sMBgGA1UdIAEB/
→˓wQOMAwwCgYIKwYBBQUHDgIwJwYIKwYBBQUHAQcBAf8EGDAWMAkEAgABMAMDAQAwCQQCAAIwAwMBADAhBggrBgEFBQcBCAEB/
→˓wQSMBCgDjAMMAoCAQACBQD/////
→˓MA0GCSqGSIb3DQEBCwUAA4IBAQA3rQv0h6x5zX6iGfUZsH0wFSbQQrZgWoql8PsHANokm+Kaxeq3waemrp1/
→˓LCzdsMF4+74m6ijDmdbDbHlPyiQwpu3L1vZafj4eBPMdI7xFYgEgabddAGR60b272BgVIO6yND3B6UMeT56NzcCOtOcPtjlgucU3pufaCwup9p9AqRpJOTKfeuiLOw0a5c/
→˓yLU1zu3TmDP65+7zaIJebUxOpJ9/4HSG7HsKEU9NHXr414vknGUr8XXiQ0/
→˓7f8DrpecGEK2fKu87kBYlewj4zNxJOeQ4heQ4/hJtEeS6dLKz+/VwaUbudlN9/c5QF5ow2bAsNM//
→˓ieEWWRL+B0Srr9uNr\n-----END CERTIFICATE-----\n"

},
"received": [
{
"uri": "rsync://localhost/repo/testbed/0/

→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",
"resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"cert_pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp\
→˓n-----END CERTIFICATE-----\n"

(continues on next page)

6.13. krillc parents statuses 41

Krill User Manual

(continued from previous page)

}
]

}
}

}
}

Example API:

$ krillc parents statuses --ca newca --api
GET:

https://localhost:3000/api/v1/cas/newca/parents
Headers:

Authorization: Bearer secret

6.14 krillc parents contact

Show contact information for a parent of this CA.

This can be useful for verifying that the parent contact information matches the RFC 8183 Parent Response that is
expected for the given parent.

The API returns the response in JSON format, but this is converted to XML by the CLI when the default text format
is used.

$ krillc parents contact --ca newca --parent my_parent

Here we will show the JSON output:

{
"type": "rfc6492",
"tag": null,
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=",
"parent_handle": "testbed",
"child_handle": "newca",
"service_uri": "https://localhost:3000/rfc6492/testbed"

}

Example API:

$ krillc parents contact --ca newca --parent my_parent --api
GET:

(continues on next page)

42 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

https://localhost:3000/api/v1/cas/newca/parents/my_parent
Headers:

Authorization: Bearer secret

6.15 krillc parents remove

Remove an existing parent from this CA.

The CA will do a best effort attempt to request revocation of any certificate received under the parent - meaning that
if the parent cannot be reached the operation just continues without error. After all a parent may well be removed
because it is no longer reachable. Furthermore any RPKI published under those certificate(s) will be withdrawn.

Note that although revocations are requested the parent may not be aware that they have been removed. You may want
to notify them through different channels. The RPKI provisioning protocol RFC 6492 does not have verbs by which
a child CA can ask the parent to be removed completely.

Example CLI:

$ krillc parents remove --ca newca --parent my_parent

Example API:

$ krillc parents remove --ca newca --parent my_parent --api
DELETE:

https://localhost:3000/api/v1/cas/newca/parents/my_parent
Headers:

Authorization: Bearer secret

6.16 krillc repo

Manage the repository where a CA will publish its objects. There are a number of subcommands provided for this:

USAGE:
krillc repo [SUBCOMMAND]

SUBCOMMANDS:
request Show RFC8183 Publisher Request
configure Configure which repository this CA uses
show Show current repo config
status Show current repo status

6.15. krillc parents remove 43

https://tools.ietf.org/html/rfc6492.html

Krill User Manual

6.17 krillc repo request

Show the RFC 8183 Publisher Request XML for a CA. You will need to hand this over to your repository so that they
can add your CA.

Example CLI:

$ krillc repo request --ca newca
<publisher_request xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1"
→˓publisher_handle="newca">
<publisher_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/
→˓rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=</
→˓publisher_bpki_ta>
</publisher_request>

The CLI will present the Publisher Request in its RFC XML format by default. The API supports both the XML and
an equivalent JSON format dependent on the file extension used in the request URI:

XML:

GET:
https://localhost:3000/api/v1/cas/newca/id/publisher_request.xml

Headers:
Authorization: Bearer secret

JSON:

GET:
https://localhost:3000/api/v1/cas/newca/id/publisher_request.json

Headers:
Authorization: Bearer secret

6.18 krillc repo configure

This is used to configure the repository used by a CA.

Your CA needs a repository configuration before it will request any certificates from parents. You can chose to
configure a repository first and then add the first parent to your CA, or vice versa. The order does not matter, but both
are needed for your CA to function.

You can use the CLI to configure a repository by submitting the RFC 8183 Repository Response XML to your CA.
Before committing the configuration Krill checks whether the Publication Server can be reached and responds to a
query sent by your CA. If this fails, then an error is reported and the configuration is aborted. You can try again when
you think the issue has been resolved.

Example CLI:

44 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

$ krillc repo configure --ca newca --response ./data/new-ca-repository-response.xml

The API will accept the plain RFC 8183 Repository Response XML if it’s posted to the API path for the CA in
question, but the CLI will post the XML formatted as its JSON equivalent:

Example API:

$ krillc repo configure --ca newca --response ./data/new-ca-repository-response.xml --
→˓api
POST:

https://localhost:3000/api/v1/cas/newca/repo
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"repository_response": {
"tag": null,
"publisher_handle": "localname",
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyg4OEJBMzA2QkMzMUVFRkU3NzRDNzYzRUY1N0VBNUZEQzdBMTlERTI1MB4XDTIxMDMyOTA3NTg0M1oXDTM2MDMyOTA4MDM0M1owMzExMC8GA1UEAxMoODhCQTMwNkJDMzFFRUZFNzc0Qzc2M0VGNTdFQTVGREM3QTE5REUyNTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAORLpfOKS8M2QGBto1OdnDYdrgjxJeF+uU7mJLgqTT3l5NbkOXxgPClUqbbbfp/
→˓c7x5sy3JbmUWaQHtkl6N9l8vcRlQQfhk0vwlVCHcQQrcMViJ5GmGtEjo7+Uf9e0TDA+rrkdqOkpOLcGRKjs1SZNqCRktubQU7Ndc0ICLo6KsQ5VYvw0p6YJcsL33+jcOWsFe6D4dhYlQkw5QHXn5c0Eenvz1SQqE96pcXJ57gmnzO9iVjY9RqPoLWXSRub0pG3Q6x8naOq16uaJZyk8kVjYOayx5umR73fI9iyMG0YOF8H5vy6/
→˓gYAnYssX26kObXan0fD9rgv4aWK0Xzp5hwz1ECAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQUiLowa8Me7+d0x2PvV+pf3HoZ3iUwHwYDVR0jBBgwFoAUiLowa8Me7+d0x2PvV+pf3HoZ3iUwDQYJKoZIhvcNAQELBQADggEBAMtieNiamax1gUeSeGuA72NucPCZIdx2JrTIDhCAjLmPpvnXu1djGSa07YpgLiosnbtMMfsQO2O/
→˓Yz1VkQUTjLn2x7DKwuL9A8+IrYELSth4aCNSgPkhZfDL238MflAxptNRAoIeRGn8l3oSg4AUzBuScErwvBbHWShO66nV0wzVFb+mLvNas3Wd/
→˓GMiZHI/MwGZpj86Q/8wvyyw2C0b0ddWaoXwDyJjuxja0nHPDHVriJ8/
→˓xsOfBk144n1zyP++apQXmXorCy4hs9GPyr+HGeoL6kNydDxdwzJLCqWW7u3wSnxjCJk+hfGq82qNm90ALv5PaOb58fDgWwBwuvTP0AA=
→˓",

"service_uri": "https://localhost:3000/rfc8181/localname/",
"repo_info": {

"base_uri": "rsync://localhost/repo/localname/",
"rpki_notify": "https://localhost:3000/rrdp/notification.xml"

}
}

}

Important: In Krill 0.9.0 you cannot update the configuration of the repository used by your CA after it has been set.

Normally there should be no need to update this configuration after it has been set up initially. However, there may be
a use case to do this if for example you chose to run your own Publication Server, but you can now use a Publication
Server provided by a third party such as your RIR or NIR.

We have an open issue to address this and we plan to support migrating repositories as soon as possible.

6.19 krillc repo status

This subcommand can be used to verify the status between a CA and its repository. Note that Krill will keep trying to
re-sync CAs with their repositories in case of any issues and the response includes an indication of the next planned
moment for this. In other words, there should not be a need to trigger this synchronisation manually, but for the
impatient, you can use krillc bulk sync.

Example CLI:

6.19. krillc repo status 45

https://tools.ietf.org/html/rfc8183.html
https://github.com/NLnetLabs/krill/issues/480

Krill User Manual

$ krillc repo status --ca newca
URI: https://localhost:3000/rfc8181/localname/
Status: success
Last contacted: 2021-04-08T09:53:27+00:00
Next contact on or before: 2021-04-09T01:53:27+00:00

So the CLI text output does NOT include the files which are published. If you want to see these files then you can look
at the JSON response instead:

{
"last_exchange": {
"timestamp": 1617875607,
"uri": "https://localhost:3000/rfc8181/localname/",
"result": "Success"

},
"next_exchange_before": 1617933207,
"published": [
{

"base64":
→˓"MIIJTQYJKoZIhvcNAQcCoIIJPjCCCToCAQMxDTALBglghkgBZQMEAgEwgZsGCyqGSIb3DQEJEAEaoIGLBIGIMIGFAgEBGA8yMDIxMDQwODA5NDgyNVoYDzIwMjEwNDA5MDk1MzI1WgYJYIZIAWUDBAIBMFMwURYsMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5jcmwDIQDYb3KmzVBt0Ee3CkVLOpcale0dr9EHoL/
→˓NWi2U6R7ffaCCBtgwggbUMIIFvKADAgECAhQfMMPbsoNAMCZM8zHTPf4QMZ06vjANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEygxNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JEMB4XDTIxMDQwODA5NDgyNVoXDTIxMDQxNTA5NTMyNVowggItMYICKTCCAiUGA1UEAxOCAhwzMDgyMDEwQTAyODIwMTAxMDBBQzhDQzlEMkUzM0ZCQ0U4MzdDMDIwRUFFQzYyNjA4OEY3NkNFQTM3MTA3MzNBMDhFNTYyQTg5M0UyMDBDRTA2QkIzMUQ0QkU3QTJGNzQ5QTM0Rjg1RTYyODdCNjE1MzQzODA2NDJBOTUzNzQyQUY2RDM0RTIxRDY0MkJFOUMwQjg1OURDQjcxMDJGRDJGNDM1MjE1ODI0RDU5NjVFNDlBNDBGRDBFOTZCQTFDRjRDQkM3QzM3RkFCRTBBNzlCNkEzRkM4OTE2MzA1RjY1MjYwREE0NERCMUEzOEZBN0MzM0UwNzRGQTRBMTVFODc5MkJEQzQwMDZCQUM2Mzc4RkU3M0Y1MEMxQjRBMTdFQ0EwNjU4NkQwRjRERUFFREQzQzJGOTlDQ0E2NzM3ODU4MUZFRUM5RjRGNjk3QTcwN0I5QUY4Q0RGQTFDREE1RERCNzA3MUU3QjY5QTNCMDQ2MUJBMDMyOTg3OEVFOTkwMDBFNDhBQUU0NzIwMjY0OEI3RjZCNUZENDc4NUFBREIzMUUwM0U0QjMxNzEzQTNGODVFNzQ4RjFCQUY0QURBNjQyMUFFODE4QjIwOEFFQkVCMUQwQjAxNzk0NEQyRTM0MDkxODExQzFFNzk5RDI3MDVBQ0IwNkQxMUEwQzQ0NjdGODlCMjU4RjBFNEY2OTRBQjkwQjAyMDMwMTAwMDEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCsjMnS4z+86DfAIOrsYmCI92zqNxBzOgjlYqiT4gDOBrsx1L56L3SaNPheYoe2FTQ4BkKpU3Qq9tNOIdZCvpwLhZ3LcQL9L0NSFYJNWWXkmkD9Dpa6HPTLx8N/
→˓q+Cnm2o/yJFjBfZSYNpE2xo4+nwz4HT6ShXoeSvcQAa6xjeP5z9QwbShfsoGWG0PTert08L5nMpnN4WB/
→˓uyfT2l6cHua+M36HNpd23Bx57aaOwRhugMph47pkADkiq5HICZIt/a1/
→˓UeFqtsx4D5LMXE6P4XnSPG69K2mQhroGLIIrr6x0LAXlE0uNAkYEcHnmdJwWssG0RoMRGf4myWPDk9pSrkLAgMBAAGjggHiMIIB3jAdBgNVHQ4EFgQU0iBYgw/
→˓6TJwtHRc735eady5RAOIwHwYDVR0jBBgwFoAUFrMckusRa8YAJsUJRK1EIF3ZrL0wDgYDVR0PAQH/
→˓BAQDAgeAMGAGA1UdHwRZMFcwVaBToFGGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5jcmwwaQYIKwYBBQUHAQEEXTBbMFkGCCsGAQUFBzAChk1yc3luYzovL2xvY2FsaG9zdC9yZXBvL3Rlc3RiZWQvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELmNlcjBrBggrBgEFBQcBCwRfMF0wWwYIKwYBBQUHMAuGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5tZnQwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAhBggrBgEFBQcBBwEB/
→˓wQSMBAwBgQCAAEFADAGBAIAAgUAMBUGCCsGAQUFBwEIAQH/
→˓BAYwBKACBQAwDQYJKoZIhvcNAQELBQADggEBAJQiHZ91d7/
→˓a52qM0DyXp7jbkygm2MkT5tc6pp6sxHv6pDfXxAzJS8OtgcFCTDKC57pKvVvw8THE079nbMSxfaA5nP8egedxeuTzrj8iOh9nHk/
→˓X4pWhIWsAvNgiTebYj+Eax97MmRWAkDgxWpDQ+CWQBl2gBstLmBKCBTw6cFlkGrBCLVe+gSDTnHpy4ltza6pD+EawTNrGLBnFn+/
→˓+dgzx/GA2qbRXiBLm2/R4HR7zI/QYy+wWDoaZraCu6dUZEF4WomS99aihEyNp8tzyuEntmmMfw0z/
→˓xYt1I7VN1pzc5umEPksSRvILmA3eJO3Khw2xWZzYjYcVyZAo0QbujdExggGqMIIBpgIBA4AU0iBYgw/
→˓6TJwtHRc735eady5RAOIwCwYJYIZIAWUDBAIBoGswGgYJKoZIhvcNAQkDMQ0GCyqGSIb3DQEJEAEaMBwGCSqGSIb3DQEJBTEPFw0yMTA0MDgwOTUzMjVaMC8GCSqGSIb3DQEJBDEiBCDjDAYghzZK/
→˓MgJG2G+mOfNzHsAV6ysGcb89bMa7KTEmTANBgkqhkiG9w0BAQEFAASCAQCHxZ3CeXicDOpmXZ/
→˓uhEGtvsuzpepVryk58zBLnSpbKfjnJWwiL0t3PsvlQuKAXgW0Xc5cC4Bbvb8Aysr4W1c0SKjnWz4dPLqgNCzvIVJRToc2xHFd6lbJGuqii6tNRvYKzPtuUMrToyHTgh6+SdWI98RsBVtQsSt68f6620ow9r4aGjdXokkayCyOBZ/
→˓DF2j3h8eZpEM1Y09kOTQfwkn297UYOv9Hi74iKIzhS3+8FmfSP0UTA207+U7HBQp9SNkK2HjFa3milgV+hJHOPutNsbgvwd5YPAFMbuve+J5k4/
→˓qvfTN0hZlGafx5ODIppv+tqJ76zts9wzgVXrpl6tKQ",

"uri": "rsync://localhost/repo/localname/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.mft"

},
{

"base64":
→˓"MIIBrzCBmAIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEygxNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JEFw0yMTA0MDgwOTQ4MjVaFw0yMTA0MDkwOTUzMjVaMACgLzAtMB8GA1UdIwQYMBaAFBazHJLrEWvGACbFCUStRCBd2ay9MAoGA1UdFAQDAgEBMA0GCSqGSIb3DQEBCwUAA4IBAQDJ3GxaYCxDCyfyfqdsUtM/
→˓OQx341/
→˓wWYrBrEAQ56NE6AVN+r0qjmO2mhNgVNQ1VdCLjo67ilQufmxGhtUQxBS625f1hr69cYw1l15wHDP4SFpXO96ysTxBhxpLGL215nT0S6FkQ+PLJ2IFLMhwn7Sns7RpQ9HDugNtz7QMRLbxeAz8ckeJHItUfyTpBhsweZEocTej1I7K4FugjZ+qSLDUFiy3QIcHO7lkepPraWLz9RVMuaJjcA7gAz3lNrtdRkygWRwGEC0eDwBa7MJ44feymQjsol6cr7m09MjSqTJyrNECjuNvLfilYuUMdW965Ih1HJQySE+FaetLQLbsTJxr
→˓",

"uri": "rsync://localhost/repo/localname/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.crl"

}
]

}

Example API:

$ krillc repo status --ca newca --api
GET:

(continues on next page)

46 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

https://localhost:3000/api/v1/cas/newca/repo/status
Headers:

Authorization: Bearer secret

6.20 krillc repo show

Show the repository configuration for your CA.

Example CLI:

$ krillc repo show --ca newca
Repository Details:

service uri: https://localhost:3000/rfc8181/localname/
base_uri: rsync://localhost/repo/localname/
rpki_notify: https://localhost:3000/rrdp/notification.xml

Example API:

$ krillc repo show --ca newca --api
GET:

https://localhost:3000/api/v1/cas/newca/repo
Headers:

Authorization: Bearer secret

6.21 krillc show

Shows lots of details of a CA. Note, we may still extend the JSON response in future but we will aim to add new
information only.

Example CLI:

$ krillc show --ca newca
Name: newca

Base uri: rsync://localhost/repo/localname/
RRDP uri: https://localhost:3000/rrdp/notification.xml

ID cert PEM:
-----BEGIN CERTIFICATE-----
MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE
NzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0
MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2
QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8
ugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu
L+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O
lB/dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo
BjnP7wDFiaZ2lwvL2beVYu6/hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3
Pi+pIDBIQ3wTcpQIOqAq/SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw
AwEB/zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU

(continues on next page)

6.20. krillc repo show 47

Krill User Manual

(continued from previous page)

7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO
NdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh
3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i
KantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ
7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6
t/d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV
bXTPM8YLRgc=
-----END CERTIFICATE-----

Hash: 992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99

Total resources:
ASNs: AS65000
IPv4: 10.0.0.0/8
IPv6: 2001:db8::/32

Parents:
Handle: my_parent Kind: RFC 6492 Parent

Resource Class: 0
Parent: my_parent
State: active Resources:

ASNs: AS65000
IPv4: 10.0.0.0/8
IPv6: 2001:db8::/32

Children:
<none>

Example JSON response of the API:

{
"handle": "newca",
"id_cert": {
"pem": "-----BEGIN CERTIFICATE-----\

→˓nMIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE\
→˓nNzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0\
→˓nMzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2\
→˓nQTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP\
→˓nADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8\
→˓nugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu\
→˓nL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O\nlB/dGlJvkAY8b/
→˓XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo\nBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3\nPi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw\nAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU\
→˓n7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO\
→˓nNdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh\
→˓n3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i\
→˓nKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ\
→˓n7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6\nt/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV\nbXTPM8YLRgc=\n-----
→˓END CERTIFICATE-----\n",

"hash": "992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99"
},
"repo_info": {
"base_uri": "rsync://localhost/repo/localname/",

(continues on next page)

48 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"rpki_notify": "https://localhost:3000/rrdp/notification.xml"
},
"parents": [
{

"handle": "my_parent",
"kind": "rfc6492"

}
],
"resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"resource_classes": {
"0": {

"name_space": "0",
"parent_handle": "my_parent",
"keys": {

"active": {
"active_key": {

"key_id": "16B31C92EB116BC60026C50944AD44205DD9ACBD",
"incoming_cert": {
"cert":

→˓"MIIFYDCCBEigAwIBAgIUN5PzATTKVrjgual4CpJMaggW2EIwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQzAeFw0yMTA0MDgwOTQ4MjVaFw0yMjA0MDcwOTUzMjVaMDMxMTAvBgNVBAMTKDE2QjMxQzkyRUIxMTZCQzYwMDI2QzUwOTQ0QUQ0NDIwNUREOUFDQkQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDsBouGWEPhWg+XsRDGZyuFLDPiIExy7p4b3bjNPBfHeSqHCeOwiVIVS2xiIAGO2NBcv+hL2OFKNCAnpd71hOXMBNXW/
→˓7OHN8TU6crIu1/
→˓w1gkf6UCXFrv+poW9EJHnLonMa4ZFLSFsvQACIGUpxIuiQjaSYFltTbb+o2c9KWoKsX0kZqt5zOrgAP8cke8SFGHdqqenPInXKTgyss9kCs9pFtMk6BIa6KjRvqFVZIf6xG53ytJ3JqsGjvEo8qoHYxkvkMtbjhjlmW097i6DeC1241X3SG64DSMk1CNv1xt5MSXubLzWOD+2lLId/
→˓ngql4OV0bLkbb63J/26c8FZOThZAgMBAAGjggJqMIICZjAPBgNVHRMBAf8EBTADAQH/
→˓MB0GA1UdDgQWBBQWsxyS6xFrxgAmxQlErUQgXdmsvTAfBgNVHSMEGDAWgBQLpcEyuUiRyy06ie3hLwGspLzT3DAOBgNVHQ8BAf8EBAMCAQYwXgYDVR0fBFcwVTBToFGgT4ZNcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby90ZXN0YmVkLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jcmwwZAYIKwYBBQUHAQEEWDBWMFQGCCsGAQUFBzAChkhyc3luYzovL2xvY2FsaG9zdC9yZXBvL3RhLzAvMEJBNUMxMzJCOTQ4OTFDQjJEM0E4OUVERTEyRjAxQUNBNEJDRDNEQy5jZXIwgdgGCCsGAQUFBwELBIHLMIHIMC8GCCsGAQUFBzAFhiNyc3luYzovL2xvY2FsaG9zdC9yZXBvL2xvY2FsbmFtZS8wLzBbBggrBgEFBQcwCoZPcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8xNkIzMUM5MkVCMTE2QkM2MDAyNkM1MDk0NEFENDQyMDVERDlBQ0JELm1mdDA4BggrBgEFBQcwDYYsaHR0cHM6Ly9sb2NhbGhvc3Q6MzAwMC9ycmRwL25vdGlmaWNhdGlvbi54bWwwGAYDVR0gAQH/
→˓BA4wDDAKBggrBgEFBQcOAjAsBggrBgEFBQcBBwEB/
→˓wQdMBswCgQCAAEwBAMCAAowDQQCAAIwBwMFACABDbgwGgYIKwYBBQUHAQgBAf8ECzAJoAcwBQIDAP3oMA0GCSqGSIb3DQEBCwUAA4IBAQB8hxBbJjvgVRMfXsotTNwKCc2Q0QO92xmZlV19Uh0/
→˓Yja+sYhyg/pG1/
→˓ZTvhOLIxGWap8JmqOnYa9XgX8uUlsV8LgJoEH3Gde3txcGtfLO99ugvbnKKGOcPxB8AX5hAhhfdiSnt3V06dEz3HUoTYdUKTV0bZr3dhRIBa94esAS7lsP2vhHEQ8gVjZGWVvS7lGju+kuwm9H3PBscW/
→˓K8349vN0QJUZGm3gAUsM5PlnAqbkM7VFIyu8g2Yp9g+M/
→˓iwaHar8CqABKxLBThYgqrPLLv6CsZD3mjk5BkXVZh6R9dBcR7sPbSfGBWPWCv8SwLknyQDOvsWTho1Ga6AibjUQp
→˓",

"uri": "rsync://localhost/repo/testbed/0/
→˓16B31C92EB116BC60026C50944AD44205DD9ACBD.cer",

"resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

}
},
"request": null

}
}

}
}

},
"children": []

}

Example API call:

$ krillc show --ca newca --api
GET:

https://localhost:3000/api/v1/cas/newca
(continues on next page)

6.21. krillc show 49

Krill User Manual

(continued from previous page)

Headers:
Authorization: Bearer secret

6.22 krillc issues

Show issues for CAs. The response will be empty unless there are actual current issues.

Example CLI:

$ krillc issues --ca newca
no issues found

Example JSON response with issues:

{
"repo_issue": {
"label": "sys-http-client",
"msg": "HTTP client error: Access Forbidden",
"args": {

"cause": "Access Forbidden"
}

},
"parent_issues": [
{

"parent": "parent",
"issue": {
"label": "rfc6492-invalid-signature",
"msg": "Invalidly signed RFC 6492 CMS",
"args": {}

}
}

]
}

Example API call:

$ krillc issues --ca newca --api
GET:

https://localhost:3000/api/v1/cas/newca/issues
Headers:

Authorization: Bearer secret

50 Chapter 6. Using the CLI or API

Krill User Manual

6.23 krillc history

Show the history of a CA. Using this command you can show the history of all the things that happened to your CA.

There are two subcommands for this:

USAGE:
krillc history [SUBCOMMAND]

SUBCOMMANDS:
commands Show the commands sent to a CA
details Show details for a command in the history of a CA

6.24 krillc history commands

With this subcommand you can look at an overview of all commands that were sent to a CA.

Example CLI:

$ krillc history commands --ca newca
time::command::key::success
2021-04-07T15:25:01Z::Add parent 'my_parent' as 'RFC 6492 Parent' ::command--
→˓1617809101--1--cmd-ca-parent-add::OK
2021-04-08T09:53:23Z::Update repo to server at: https://localhost:3000/rfc8181/
→˓localname/ ::command--1617875603--2--cmd-ca-repo-update::OK
2021-04-08T09:53:24Z::Update entitlements under parent 'my_parent': 0 => asn: AS65000,
→˓ v4: 10.0.0.0/8, v6: 2001:db8::/32 ::command--1617875604--3--cmd-ca-parent-
→˓entitlements::OK
2021-04-08T09:53:25Z::Update received cert in RC '0', with resources 'asn: 1 blocks,
→˓v4: 1 blocks, v6: 1 blocks' ::command--1617875605--4--cmd-ca-rcn-receive::OK

The JSON response includes some data which we do not (yet) show in the text output - e.g. the name of the user who
sent a command. This will become more relevant in future as people start using the multi-user feature of the Krill UI:

{
"offset": 0,
"total": 4,
"commands": [
{

"key": "command--1617809101--1--cmd-ca-parent-add",
"actor": "master-token",
"timestamp": 1617809101616,
"handle": "newca",
"version": 1,
"sequence": 1,
"summary": {
"msg": "Add parent 'my_parent' as 'RFC 6492 Parent'",
"label": "cmd-ca-parent-add",
"args": {
"parent": "my_parent",
"parent_contact": "RFC 6492 Parent"

}
},
"effect": {
"result": "success",

(continues on next page)

6.23. krillc history 51

Krill User Manual

(continued from previous page)

"events": [
1

]
}

},
{

"key": "command--1617875603--2--cmd-ca-repo-update",
"actor": "master-token",
"timestamp": 1617875603613,
"handle": "newca",
"version": 2,
"sequence": 2,
"summary": {
"msg": "Update repo to server at: https://localhost:3000/rfc8181/localname/",
"label": "cmd-ca-repo-update",
"args": {
"service_uri": "https://localhost:3000/rfc8181/localname/"

}
},
"effect": {

"result": "success",
"events": [
2

]
}

},
{

"key": "command--1617875604--3--cmd-ca-parent-entitlements",
"actor": "krill",
"timestamp": 1617875604550,
"handle": "newca",
"version": 3,
"sequence": 3,
"summary": {
"msg": "Update entitlements under parent 'my_parent': 0 => asn: AS65000, v4:

→˓10.0.0.0/8, v6: 2001:db8::/32 ",
"label": "cmd-ca-parent-entitlements",
"args": {
"parent": "my_parent"

}
},
"effect": {

"result": "success",
"events": [
3,
4

]
}

},
{

"key": "command--1617875605--4--cmd-ca-rcn-receive",
"actor": "krill",
"timestamp": 1617875605662,
"handle": "newca",
"version": 5,
"sequence": 4,
"summary": {

(continues on next page)

52 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"msg": "Update received cert in RC '0', with resources 'asn: 1 blocks, v4: 1
→˓blocks, v6: 1 blocks'",

"label": "cmd-ca-rcn-receive",
"args": {
"asn_blocks": "1",
"class_name": "0",
"ipv4_blocks": "1",
"ipv6_blocks": "1",
"resources": "asn: AS65000, v4: 10.0.0.0/8, v6: 2001:db8::/32"

}
},
"effect": {

"result": "success",
"events": [
5

]
}

}
]

}

The CLI and API support pagination:

--after <<RFC 3339 DateTime>> Show commands issued after date/time in RFC 3339
→˓format, e.g. 2020-04-

09T19:37:02Z
--before <<RFC 3339 DateTime>> Show commands issued after date/time in RFC 3339
→˓format, e.g. 2020-04-

09T19:37:02Z
--offset <<number>> Number of results to skip
--rows <<number>> Number of rows (max 250)

And these values are converted to path parameters in the API call:

$ krillc history commands --ca newca --after 2020-12-01T00:00:00Z --before 2021-04-
→˓09T00:00:00Z --rows 2 --offset 1 --api
GET:

https://localhost:3000/api/v1/cas/newca/history/commands/2/1/1606780800/1617926400
Headers:

Authorization: Bearer secret

6.25 krillc history details

Show details for a specific historic CA command. This subcommand expects the command key as reported by krillc
history commands.

The text output of the CLI will show a summary of the command details, and the state changes in the CA (called
events) that followed:

$ krillc history details --ca newca --key command--1617875604--3--cmd-ca-parent-
→˓entitlements
Time: 2021-04-08T09:53:24Z
Action: Update entitlements under parent 'my_parent': 0 => asn: AS65000, v4: 10.0.0.0/
→˓8, v6: 2001:db8::/32

(continues on next page)

6.25. krillc history details 53

Krill User Manual

(continued from previous page)

Changes:
added resource class with name '0'
requested certificate for key (hash) '16B31C92EB116BC60026C50944AD44205DD9ACBD'

→˓under resource class '0'

If you want to see the full details, then have a look at the JSON response instead:

{
"command": {
"actor": "krill",
"time": "2021-04-08T09:53:24.550017Z",
"handle": "newca",
"version": 3,
"sequence": 3,
"details": {

"type": "update_resource_entitlements",
"parent": "my_parent",
"entitlements": [

{
"resource_class_name": "0",
"resources": {
"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

}
}

]
},
"effect": {

"result": "success",
"events": [
3,
4

]
}

},
"result": {
"Events": [

{
"id": "newca",
"version": 3,
"details": {
"type": "resource_class_added",
"resource_class_name": "0",
"parent": "my_parent",
"parent_resource_class_name": "0",
"pending_key": "16B31C92EB116BC60026C50944AD44205DD9ACBD"

}
},
{

"id": "newca",
"version": 4,
"details": {
"type": "certificate_requested",
"resource_class_name": "0",
"req": {
"class_name": "0",

(continues on next page)

54 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"limit": {
"asn": "none",
"v4": "none",
"v6": "none"

},
"csr":

→˓"MIIDjzCCAncCAQAwMzExMC8GA1UEAxMoMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAOwGi4ZYQ+FaD5exEMZnK4UsM+IgTHLunhvduM08F8d5KocJ47CJUhVLbGIgAY7Y0Fy/
→˓6EvY4Uo0ICel3vWE5cwE1db/s4c3xNTpysi7X/DWCR/pQJcWu/
→˓6mhb0QkecuicxrhkUtIWy9AAIgZSnEi6JCNpJgWW1Ntv6jZz0pagqxfSRmq3nM6uAA/
→˓xyR7xIUYd2qp6c8idcpODKyz2QKz2kW0yToEhroqNG+oVVkh/
→˓rEbnfK0ncmqwaO8SjyqgdjGS+Qy1uOGOWZbT3uLoN4LXbjVfdIbrgNIyTUI2/
→˓XG3kxJe5svNY4P7aUsh3+eCqXg5XRsuRtvrcn/
→˓bpzwVk5OFkCAwEAAaCCARUwggERBgkqhkiG9w0BCQ4xggECMIH/MA8GA1UdEwEB/
→˓wQFMAMBAf8wDgYDVR0PAQH/
→˓BAQDAgEGMIHbBggrBgEFBQcBCwEBAASByzCByDAvBggrBgEFBQcwBYYjcnN5bmM6Ly9sb2NhbGhvc3QvcmVwby9sb2NhbG5hbWUvMC8wWwYIKwYBBQUHMAqGT3JzeW5jOi8vbG9jYWxob3N0L3JlcG8vbG9jYWxuYW1lLzAvMTZCMzFDOTJFQjExNkJDNjAwMjZDNTA5NDRBRDQ0MjA1REQ5QUNCRC5tZnQwOAYIKwYBBQUHMA2GLGh0dHBzOi8vbG9jYWxob3N0OjMwMDAvcnJkcC9ub3RpZmljYXRpb24ueG1sMA0GCSqGSIb3DQEBCwUAA4IBAQBFxEkEqMOnNWuIZalQkX/
→˓hxjAia3vtLrYtET1InOF/5UtRClDX5EWl34JRCXEIkDgWWbCVmxQyTw0VfqKImT/JqzC/
→˓NXrWMJBVJ27JgkHH5TITHGgfIjDRS19+JOFdiCBlQWgU3V5zfMGlB0263xRteX7A1kLedLuvt51DgNMwyWFgp/
→˓PkJKUCTEYi27j6DOF5J8jZ7JD5lMBs7gOGAiUJSzCBY7XfjEeVmePRLJ8hB0Wa/
→˓n3h+ni6UTOF6itKPmHqddxpiEb8ij987gCTjuZQisi9j+JKoPqzXon2vOx+GJjo4Sb++HD0buatiEmj5SvUmV8gl0F/
→˓msh4F4a5YG8r"

},
"ki": "16B31C92EB116BC60026C50944AD44205DD9ACBD"

}
}

]
}

}

Example API call:

$ krillc history details --ca newca --key command--1617875604--3--cmd-ca-parent-
→˓entitlements --api
GET:

https://localhost:3000/api/v1/cas/newca/history/details/command--1617875604--3--cmd-
→˓ca-parent-entitlements
Headers:

Authorization: Bearer secret

6.26 krillc roas

Manage ROAs for your CA.

Krill lets users create Route Origin Authorisations (ROAs), the signed objects that state which Autonomous System
(AS) is authorised to originate one of your prefixes, along with the maximum prefix length it may have.

Important: Krill CAs let operators configure which authorizations they want to have on ROA objects. But it’s
Krill that will figure out which objects to create for this. I.e. users just configure their intent to authorise an ASN to
originate a prefix, but they do not need to worry about things like the actual ROA encoding, before and after times,
object renewals, publishing, and under which parent the ROA is to be created - if there are multiple. However, we will
refer to these authorizations as ROAs, because for all intent and purposes this difference is an implementation detail
that Krill, by design, abstracts away from the operator.

6.26. krillc roas 55

Krill User Manual

USAGE:
krillc roas [SUBCOMMAND]

SUBCOMMANDS:
list Show current authorizations
update Update authorizations
bgp Show current authorizations in relation to known announcements

6.27 krillc roas list

Show current authorizations.

USAGE:
krillc roas list [FLAGS] [OPTIONS]

OPTIONS:
-c, --ca <name> The name of the CA you wish to control. Or set env: KRILL_

→˓CLI_MY_CA

Example:

You can list ROAs in the following way:

$ krillc roas list
192.0.2.0/24 => 64496
2001:db8::/32-48 => 64496

6.28 krillc roas update

Update ROAs.

The CLI supports adding or removing individual ROAs as well as submitting a file with a delta of additions and
removals as an atomic delta. In terms of the API these options will call the same API end-point and always submit a
JSON body with a delta.

• Add a single ROA

Example CLI usage to add a ROA:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496"

This will submit the following JSON to the API:

$ krillc roas update --add "192.168.0.0/16 => 64496" --api
POST:

https://localhost:3000/api/v1/cas/ca/routes
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"added": [
{

"asn": 64496,

(continues on next page)

56 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"prefix": "192.168.0.0/16"
}

],
"removed": []

}

• Remove a single ROA

Example CLI usage to remove a ROA:

$ krillc roas update --ca newca --remove "192.168.0.0/16 => 64496"

This will submit the following JSON to the API:

$ krillc roas update --ca newca --remove "192.168.0.0/16 => 64496" --api
POST:

https://localhost:3000/api/v1/cas/newca/routes
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"added": [],
"removed": [
{

"asn": 64496,
"prefix": "192.168.0.0/16"

}
]

}

• Update multiple ROAs

You can also update multiple ROAs as a single delta. The CLI can do deltas if you provide it with a file using the
following format:

Some comment
Indented comment

A: 10.0.0.0/24 => 64496
A: 10.1.0.0/16-20 => 64496 # Add prefix with max length
R: 10.0.3.0/24 => 64496 # Remove existing authorization

And then call the CLI with the --delta option. The CLI will parse the delta file and submit a JSON body containing
multiple changes:

krillc roas update --delta ./data/roa-delta.txt --ca newca --api
POST:
https://localhost:3000/api/v1/cas/newca/routes

Headers:
content-type: application/json
Authorization: Bearer secret

Body:
{
"added": [
{

"asn": 64496,

(continues on next page)

6.28. krillc roas update 57

Krill User Manual

(continued from previous page)

"prefix": "10.0.0.0/24"
},
{

"asn": 64496,
"prefix": "10.1.0.0/16",
"max_length": 20

}
],
"removed": [
{

"asn": 64496,
"prefix": "10.0.3.0/24"

}
]

}

• Errors

You will get an error response if ROA updates cannot be applied. For example adding a duplicate ROA will result in
the following error:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496"
Delta rejected:

Cannot add the following duplicate ROAs:
192.168.0.0/16-16 => 64496

The returned JSON for an error with with the label “ca-roa-delta-error” has a format similar to the normal error
response, but with the addition of a delta_error entry with details. There you can expect 4 categories of errors:

duplicates You are trying to add a ROA that already exists
notheld You are trying to add a ROA for a prefix you don’t hold
unknowns You are trying to remove a ROA that does not exist
invalid_length You specified an invalid length/max_length for a prefix

Example:

{
"label": "ca-roa-delta-error",
"msg": "Delta rejected, see included json",
"args": {},
"delta_error": {
"duplicates": [

{
"asn": 1,
"prefix": "10.0.0.0/20",
"max_length": 24

}
],
"notheld": [

{
"asn": 1,
"prefix": "10.128.0.0/9"

}
],

(continues on next page)

58 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"unknowns": [
{

"asn": 1,
"prefix": "192.168.0.0/16"

}
],
"invalid_length": [

{
"asn": 1,
"prefix": "10.0.1.0/25"

}
]

}
}

• Try

With RPKI ROAs you can create RPKI invalids in BGP if for example your prefix is multi homed and you authorise
one ASN, but not another. Another cause of invalids might be that you authorise a covering prefix, but not more
specific announcements that you do.

To help with this Krill also comes with a “try”, or “feeling lucky” feature. Meaning that when --try is specified with
an update, Krill will check the effect of the update against what it knows about BGP announcements. If the effect has
no negative side-effects then it will just be applied, but if it would result in any invalid announcements then an error
report will be returned instead:

$ krillc roas update --ca newca --add "192.168.0.0/16 => 64496" --try
Unsafe update, please review

Effect would leave the following invalids:

Announcements from invalid ASNs:
192.168.0.0/24 => 64497

192.168.1.0/24 => 64497

Announcements too specific for their ASNs:

192.168.0.0/24 => 64496

You may want to consider this alternative:
Authorize these announcements which are currently not covered:

192.168.0.0/24 => 64496
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

Example JSON response:

{
"effect": [
{

"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16,
"state": "roa_disallowing",
"disallows": [

(continues on next page)

6.28. krillc roas update 59

Krill User Manual

(continued from previous page)

{
"asn": 64496,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.0.0/24"

},
{
"asn": 64497,
"prefix": "192.168.1.0/24"

}
]

},
{

"asn": 64496,
"prefix": "192.168.0.0/24",
"state": "announcement_invalid_length",
"disallowed_by": [
{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

},
{

"asn": 64497,
"prefix": "192.168.0.0/24",
"state": "announcement_invalid_asn",
"disallowed_by": [

{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

},
{

"asn": 64497,
"prefix": "192.168.1.0/24",
"state": "announcement_invalid_asn",
"disallowed_by": [

{
"asn": 64496,
"prefix": "192.168.0.0/16",
"max_length": 16

}
]

}
],
"suggestion": {
"not_found": [

{
"asn": 64496,
"prefix": "192.168.0.0/24"

},
(continues on next page)

60 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

{
"asn": 64497,
"prefix": "192.168.0.0/24"

},
{

"asn": 64497,
"prefix": "192.168.1.0/24"

}
]

}
}

The API call for this is the same as when posting a normal ROA delta, except that /try is appended to the path, e.g.:
POST https://localhost:3000/api/v1/cas/newca/routes/try

Important: Krill does this analysis based on RIPE RIS BGP information. This information may be outdated, or
incomplete. More importantly it may also include erroneous or even malicious announcements that are seen in the
global BGP. So ALWAYS review the report and suggestions returned by Krill! Note, we plan to support other ways of
getting BGP information into Krill in future - e.g. by parsing a local BGP feed or table.

• Dryrun

The dryrun option is similar to try, except that, well, it doesn’t even try to apply a change. It just reports the effects
of a change including positive effects.. so, actually, it is different:

$ krillc roas update --ca newca --add "10.0.0.0/24 => 64496" --dryrun
Authorizations covering announcements seen:

Definition: 10.0.0.0/24-24 => 64496

Authorizes:
10.0.0.0/24 => 64496

Announcements which are valid:

Announcement: 10.0.0.0/24 => 64496

6.29 krillc roas bgp

Important: Krill does BGP analysis based on RIPE RIS BGP information. This information may be outdated, or
incomplete. More importantly it may also include erroneous or even malicious announcements that are seen in the
global BGP. So ALWAYS review the reports and suggestions returned by Krill! Note, we plan to support other ways
of getting BGP information into Krill in future - e.g. by parsing a local BGP feed or table.

The ROA vs BGP analysis is used in the try and dryrun options when applying a ROA delta, but this can also be
accessed proactively. For this the CLI has the following subcommands:

krillc roas bgp analyze Show full report of ROAs vs known BGP announcements
krillc roas bgp suggest Show ROA suggestions based on known BGP announcements

Example of the analyze function:

6.29. krillc roas bgp 61

Krill User Manual

$ krillc roas bgp analyze --ca newca
Authorizations covering announcements seen:

Definition: 192.168.0.0/24-24 => 64496

Authorizes:
192.168.0.0/24 => 64496

Disallows:
192.168.0.0/24 => 64497

Authorizations disallowing announcements seen. You may want to use AS0 ROAs instead:

Definition: 192.168.0.0/16-16 => 64496

Disallows:
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

Announcements which are valid:

Announcement: 192.168.0.0/24 => 64496

Announcements from an unauthorized ASN:

Announcement: 192.168.0.0/24 => 64497

Disallowed by authorization(s):
192.168.0.0/16-16 => 64496
192.168.0.0/24-24 => 64496

Announcement: 192.168.1.0/24 => 64497

Disallowed by authorization(s):
192.168.0.0/16-16 => 64496

Announcements which are 'not found' (not covered by any of your authorizations):

Announcement: 10.0.0.0/21 => 64497
Announcement: 10.0.0.0/22 => 64496
Announcement: 10.0.0.0/22 => 64497
Announcement: 10.0.0.0/24 => 64496
Announcement: 10.0.2.0/23 => 64496

Example output of the “suggest” option:

$ krillc roas bgp suggest --ca newca
Remove the following ROAs which only disallow announcements (did you use the wrong
→˓ASN?), if this is intended you may want to use AS0 instead:
192.168.0.0/16-16 => 64496

Keep the following authorizations:
192.168.0.0/24-24 => 64496

Authorize these announcements which are currently not covered:
10.0.0.0/21 => 64497

(continues on next page)

62 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

10.0.0.0/22 => 64496
10.0.0.0/22 => 64497
10.0.0.0/24 => 64496
10.0.2.0/23 => 64496

Authorize these announcements which are currently invalid because they are not
→˓allowed for these ASNs:
192.168.0.0/24 => 64497
192.168.1.0/24 => 64497

6.30 krillc bulk

Manually trigger refresh/republish/resync for all CAs.

Normally there is no need to use these functions. Krill has background processes that these functions run whenever
they are needed. However, they may be useful in cases where the connection between your CA(s) and their remote
parents or repository may be broken for example, and you want to debug the issue.

There are three “bulk” subcommands available:

USAGE:
krillc bulk [SUBCOMMAND]

SUBCOMMANDS:
publish Force that all CAs create new objects if needed (in which case

→˓they will also sync)
refresh Force that all CAs ask their parents for updated certificates
sync Force that all CAs sync with their repo server

6.31 krillc bulk publish

Force that all CAs create new objects if needed (in which case they will also sync). Note that this function is executed
when Krill starts up and then again every 10 minutes.

Example CLI:

$ krillc bulk publish

Example API call:

$ krillc bulk publish --api
POST:

https://localhost:3000/api/v1/bulk/cas/publish
Headers:

Authorization: Bearer secret
Body:
<empty>

6.30. krillc bulk 63

Krill User Manual

6.32 krillc bulk refresh

Force that all CAs ask their parents for updated certificates. Note that this function is executed when Krill starts up
and then again every 10 minutes.

Example CLI:

$ krillc bulk refresh

Example API call:

$ krillc bulk refresh --api
POST:

https://localhost:3000/api/v1/bulk/cas/sync/parent
Headers:

Authorization: Bearer secret
Body:
<empty>

6.33 krillc bulk sync

Force that all CAs sync with their publication server.

This function is executed when Krill starts up. When Krill is running then CAs will synchronise with their publication
server whenever there is new content to publish. And if such a synchronisation fails, then Krill will schedule another
attempt every 5 minutes until synchronisation succeeds.

However, if you believe that there is an issue with the publication server, or you wish to debug connection issues, then
you can trigger this function manually:

$ krillc bulk sync --api
POST:

https://localhost:3000/api/v1/bulk/cas/sync/repo
Headers:

Authorization: Bearer secret
Body:
<empty>

6.34 krillc children

Manage children for a CA in Krill.

Most operators will not need this, but just like you can operate your Krill CA under an RIR or NIR, you can delegate
your resources to so-called child CAs. This may be useful in case you need to authorise different units of your
organisation or customers to manage some of your prefixes.

USAGE:
krillc children [SUBCOMMAND]

SUBCOMMANDS:
add Add a child to a CA.
info Show info for a child (id and resources).

64 Chapter 6. Using the CLI or API

Krill User Manual

update Update an existing child of a CA.
response Get the RFC8183 response for a child.
remove Remove an existing child from a CA.

6.35 krillc children add

Add a child to a CA. To add a child, you will need to:

1. Choose a unique local name (handle) that the parent will use for the child

2. Choose initial resources (asn, ipv4, ipv6)

3. Present the child’s RFC 8183 request

The default response is the RFC 8183 parent response XML file. Or, if you set --format json you will get the
plain API response.

If you need the response again, you can use the krillc children response command.

When you use the CLI you can provide a path to the Child Request XML and the CLI will parse this, and convert it
to the JSON that Krill expects when adding a child. We chose to use a different format here because we needed to
include other information not contained in the XML. I.e. just submitting the plain XML would not work here.

Example CLI:

$ krillc children add --ca testbed --child newca --ipv4 "10.0.0.0/8" --ipv6
→˓"2001:db8::/32" --asn "AS65000" --request ./data/new-ca-child-request.xml
<parent_response xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1"
→˓service_uri="https://localhost:3000/rfc6492/testbed" child_handle="newca" parent_
→˓handle="testbed">
<parent_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=</parent_bpki_ta>
</parent_response>

Example API call:

$ krillc children add --ca testbed --child newca --ipv4 "10.0.0.0/8" --ipv6
→˓"2001:db8::/32" --asn "AS65000" --request ./data/new-ca-child-request.xml --api
POST:

https://localhost:3000/api/v1/cas/testbed/children
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"handle": "newca",
"resources": {

(continues on next page)

6.35. krillc children add 65

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

"asn": "AS65000",
"v4": "10.0.0.0/8",
"v6": "2001:db8::/32"

},
"id_cert":

→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/
→˓rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc="
}

6.36 krillc children info

Show info for a child (id and resources).

Example CLI:

$ krillc children info --ca testbed --child newca
-----BEGIN CERTIFICATE-----
MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE
NzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0
MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2
QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8
ugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu
L+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O
lB/dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo
BjnP7wDFiaZ2lwvL2beVYu6/hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3
Pi+pIDBIQ3wTcpQIOqAq/SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw
AwEB/zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU
7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO
NdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh
3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i
KantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ
7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6
t/d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV
bXTPM8YLRgc=
-----END CERTIFICATE-----

SHA256 hash of PEM encoded certificate:
→˓992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99
resources: asn: , v4: 10.0.0.0/8, 192.168.0.0/16, v6:

Example JSON response:

{
"id_cert": {

(continues on next page)

66 Chapter 6. Using the CLI or API

Krill User Manual

(continued from previous page)

"pem": "-----BEGIN CERTIFICATE-----\
→˓nMIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJE\
→˓nNzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0\
→˓nMzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2\
→˓nQTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEP\
→˓nADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8\
→˓nugFiYI4vRqR+gDMHhR3t/X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/hDYJfWMXZVcEu\
→˓nL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8O\nlB/dGlJvkAY8b/
→˓XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/rC6QBDEo\nBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3\nPi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUw\nAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU\
→˓n7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/gpJtO\
→˓nNdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh\
→˓n3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/YPMPVBpmG15Z9i\
→˓nKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ\
→˓n7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6\nt/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDV\nbXTPM8YLRgc=\n-----
→˓END CERTIFICATE-----\n",

"hash": "992ac17d85fef11d8be4aa37806586ce68b61fe9cf65c0965928dbce0c398a99"
},
"entitled_resources": {
"asn": "",
"v4": "10.0.0.0/8, 192.168.0.0/16",
"v6": ""

}
}

Example API call:

$ krillc children info --ca testbed --child newca --api
GET:

https://localhost:3000/api/v1/cas/testbed/children/newca
Headers:

Authorization: Bearer secret

6.37 krillc children update

Update the resource entitlements of an existing child of a CA, or update the identity certificate that they will use when
sending RFC 6492 requests.

Important: When updating resources you need to specify the full new set of resource entitlements for the child. This
is not a delta. Also if you specify one resource type only like --ipv4, then --ipv6 and --asn will be assumed to
be intentionally empty:

$ krillc children update --ca testbed --child newca --ipv4 "10.0.0.0/8" --api
POST:

https://localhost:3000/api/v1/cas/testbed/children/newca
Headers:

content-type: application/json
Authorization: Bearer secret

Body:

(continues on next page)

6.37. krillc children update 67

https://tools.ietf.org/html/rfc6492.html

Krill User Manual

(continued from previous page)

{
"id_cert": null,
"resources": {
"asn": "",
"v4": "10.0.0.0/8",
"v6": ""

}
}

When updating an ID certificate the CLI expects it to be DER encoded. It will submit it in base64 encoded form to the
API and leave the “resources” as null then. The null value means that this is not updated:

$ krillc children update --ca testbed --child newca --idcert ./data/new-ca.cer --api
POST:

https://localhost:3000/api/v1/cas/testbed/children/newca
Headers:

content-type: application/json
Authorization: Bearer secret

Body:
{

"id_cert":
→˓"MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFRjJENzgwRkNCRkU1QjZBMkExMjA1OUM0MDlDN0M5Mjc3NTQxOTU2MB4XDTIxMDQwNzE0MzUxNFoXDTM2MDQwNzE0NDAxNFowMzExMC8GA1UEAxMoRUYyRDc4MEZDQkZFNUI2QTJBMTIwNTlDNDA5QzdDOTI3NzU0MTk1NjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANuBsEO4C9n7PlYcDT0PTeZntR5l778lZQDsgxiB7ofLrg8lKcf8ugFiYI4vRqR+gDMHhR3t/
→˓X3Ho5gC7uuKf4LYqbJj+Z9ltr/236/
→˓hDYJfWMXZVcEuL+wUble1zhe2NKrgnAkpReVMSdiugoqZ9ICK2Fwkj5jCGc/qHiWOba7T78zfij8OlB/
→˓dGlJvkAY8b/XTNKsTrLozi1uVAC8GqDrV5MEgY/NfzUvgA024yxx/
→˓rC6QBDEoBjnP7wDFiaZ2lwvL2beVYu6/
→˓hVcXQzsVN+ijy7cGdkE6zi0meXJLTHPEpoA88hi3Pi+pIDBIQ3wTcpQIOqAq/
→˓SZuh4dbZK7BV8MCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU7y14D8v+W2oqEgWcQJx8kndUGVYwHwYDVR0jBBgwFoAU7y14D8v+W2oqEgWcQJx8kndUGVYwDQYJKoZIhvcNAQELBQADggEBAArqsa/
→˓gpJtONdgIWV1EqwEzhKKA2EP6tLDF9ejsdMFNYrYr+2hVWaoLsSuarfwfLFSgKDFqR6sh3ljYq6mIz9gdkjBOJsR9JyHFEtsDsRpf8Hs1WlbIb8bWb73Cp/
→˓YPMPVBpmG15Z9iKantzC1tck+E1xYW5awvj+YZqGVqyFdPJOZWmaYoS83kWvg4g4IucXTH6wwy23MQ7+0gyoK4wxfXRQmWjlXpLueCOsJo7ZXopsDAmXHLoFKZVEXn1ocQNc91l521BEQ6t/
→˓d7srQA4IxZCRGh9B+JdAIOKuXBA0nncmMJLQN8Qpxlz2bxKKAgXBLdoDqjbTDVbXTPM8YLRgc=",
"resources": null

}

6.38 krillc children response

Get the RFC 8183 Parent Response for a child. The child will need this to add your CA as their parent.

Example CLI:

$ krillc children response --ca testbed --child newca
<parent_response xmlns="http://www.hactrn.net/uris/rpki/rpki-setup/" version="1"
→˓service_uri="https://localhost:3000/rfc6492/testbed" child_handle="newca" parent_
→˓handle="testbed">
<parent_bpki_ta>

→˓MIIDNDCCAhygAwIBAgIBATANBgkqhkiG9w0BAQsFADAzMTEwLwYDVQQDEyhFOTBDMjE3MzRDMkMzNzBBOTFBODQ3NUNCNEYwRTc1REE0RDBGMEJGMB4XDTIxMDMyOTA3NTg0NFoXDTM2MDMyOTA4MDM0NFowMzExMC8GA1UEAxMoRTkwQzIxNzM0QzJDMzcwQTkxQTg0NzVDQjRGMEU3NURBNEQwRjBCRjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANcL8DFS3AQyI8HewRH2Xkh6RNIfCSb7mJDaS6dHwp2Dns0VZ07SjA/
→˓vVYxq1F1w2yQ/
→˓VoTr1dvEHxJ+SDayMcFVktWCObiY8tcPhvWG+OdaX9ckDJhsOEEvdVEogwiGacNs7yXJPbqDBptJtbR8/
→˓CauF9OqMqjkB/8xkGmBoY5OI/
→˓V2832jkp7LPsbyET0RMQN7fgSpGbewvkaZVxGU3pHh5kT1nzPTXrwjxNMXgpunSEY7zR20vYCvsYYbxnSwFNbSMSL+Jgpa+HWPUc0ydqk2Dn3XneHqClu3O37URxcvI+th4+rECNp6/
→˓qlqlZK+tkppI2LkSBhTV5+n7cGA8ZsCAwEAAaNTMFEwDwYDVR0TAQH/BAUwAwEB/
→˓zAdBgNVHQ4EFgQU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wHwYDVR0jBBgwFoAU6Qwhc0wsNwqRqEdctPDnXaTQ8L8wDQYJKoZIhvcNAQELBQADggEBAG9DNu26d2S9b15NzzaArLg3Ac/
→˓nVmqDlK/1sWZNUXFWP4dt1wLTjDWnceyS8mI7Yx8dH/Fez60m4lp4dD45eeaXfbjP2cWnh3n/
→˓PLGE70Nj+G0AnUhUmwiTl0H6Px1xn8fZouhv9MEheaZJA+M4NF77+Nmkp2P3WI4cvIS7Te7R/
→˓7XpwSr29lVNtYjmRlrBDXx/bMFSgFL61mrtj/
→˓l6G8OB40w+sAwO0XKUj1vUUpfIXc3ISCo0LNT9JSPcgy1SZWfmLb98q4HuvxekhkIPRzW7vlb/
→˓NBXGarZmKc+HQjE2aXcIewhen2OoTSNda2jSSuEWZuWzZu0aMCKwFBNHLqs=</parent_bpki_ta>

(continues on next page)

68 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc8183.html

Krill User Manual

(continued from previous page)

</parent_response>

Example API call:

$ krillc children response --ca testbed --child newca --api
GET:

https://localhost:3000/api/v1/cas/testbed/children/newca/contact
Headers:

Authorization: Bearer secret

Note that the API always returns the RFC 8183 Parent Response in JSON format, but the CLI converts it. Other API
endpoints support getting such files in either JSON or RFC standard XML format. If there is desire to support this
here as well, then we will add this in a future release.

6.39 krillc children remove

Remove an existing child from a CA. We suggest that you discuss this action with your child first. Removing the child
will revoke their certificate(s), but they may continue to ask for their entitlements until they decide to remove your CA
as a parent as well. Of course if the child had multiple parents, they may continue to maintain healthy relationships
with their other parent(s).

Example CLI / API call:

$ krillc children remove --ca testbed --child newca --api
DELETE:

https://localhost:3000/api/v1/cas/testbed/children/newca
Headers:

Authorization: Bearer secret

6.40 krillc keyroll

Perform a key rollover for a CA.

Krill supports RFC 6489 Key Rollovers. The process is manual for now. I.e. it’s up to the operator to initiate a key
rollover - there is no automation based on key age for example. We expect that this is what operators would want.
More importantly though, this also means that operators should execute both steps in the process to start and finish the
key rollover:

krillc keyroll init Initialise roll for all keys held by this CA.
krillc keyroll activate Finish roll for all keys held by this CA.

6.39. krillc children remove 69

https://tools.ietf.org/html/rfc8183.html
https://tools.ietf.org/html/rfc6489.html

Krill User Manual

6.41 krillc keyroll init

Initialise roll for all keys held by this CA.

Example CLI/API call:

$ krillc keyroll init --ca newca --api
POST:

https://localhost:3000/api/v1/cas/newca/keys/roll_init
Headers:

Authorization: Bearer secret
Body:
<empty>

6.41.1 krillc keyroll activate

Finish roll for all keys held by this CA.

Note that RFC 6489 says that you should wait 24 hours before doing this step. So, please observe this period for
planned key rollovers. For emergency rollovers where the old key is compromised, or if this rollover is part of an
emergency migration to a new publication server, do this step as soon as possible.

Example CLI/API:

$ krillc keyroll activate --ca newca --api
POST:

https://localhost:3000/api/v1/cas/newca/keys/roll_activate
Headers:

Authorization: Bearer secret
Body:
<empty>

70 Chapter 6. Using the CLI or API

https://tools.ietf.org/html/rfc6489.html

CHAPTER

SEVEN

USING THE API

The Krill API is a primarily JSON based REST-like HTTPS API with bearer token based authentication.

7.1 Getting Help

• Consult the Interactive API documentation (courtesy of ReDoc)

• Follow the API links in the Krill CLI documentation, e.g. API Call: :krill_api:`GET /v1/cas <list_cas>`

• Check out the API hints built-in to the Krill CLI, e.g.

$ krillc list --api
GET:

https://<your.domain>/api/v1/cas
Headers:

Authorization: Bearer *****

7.2 Generating Client Code

The OpenAPI Generator can generate Krill API client code in many languages from the Krill v0.7.3 OpenAPI speci-
fication.3

7.3 Sample Application

Below is an example of how to write a small Krill client application in Python 3 using a Krill API client library
produced by the OpenAPI Generator. To try out this sample you’ll need Docker and Python 3.

1. Save the following as /tmp/krill_test.py, replacing <YOUR XXX> values with the correct access token
and domain name for your Krill server. This example assumes that your Krill instance API endpoint is available on
port 443 using a valid TLS certificate.

Import the OpenAPI generated Krill client library
import krill_api
from krill_api import *

Create a configuration for the client library telling it how to connect to
the Krill server
krill_api_config = krill_api.Configuration()
krill_api_config.access_token = '<YOUR KRILL API TOKEN>'

(continues on next page)

71

https://swagger.io/docs/specification/authentication/bearer-authentication/
http://redocly.github.io/redoc/?url=https://raw.githubusercontent.com/NLnetLabs/krill/v0.8.1/doc/openapi.yaml
https://github.com/Redocly/redoc
https:/
https://openapi-generator.tech/
https://github.com/NLnetLabs/krill/blob/v0.7.3/doc/openapi.yaml
https://github.com/NLnetLabs/krill/blob/v0.7.3/doc/openapi.yaml

Krill User Manual

(continued from previous page)

krill_api_config.host = "https://{}/api/v1".format('<YOUR KRILL FQDN>')
krill_api_config.verify_ssl = True
krill_api_config.assert_hostname = False
krill_api_config.cert_file = None

Create a Krill API client
krill_api_client = krill_api.ApiClient(krill_api_config)

Get the client helper for the Certificate Authority set of Krill API endpoints
krill_ca_api = CertificateAuthoritiesApi(krill_api_client)

Query Krill for the list of configured CAs
print(krill_ca_api.list_cas())

2. Run the following commands in a shell to generate a Krill client library:

prepare a working directory
GENDIR=/tmp/gen
VENVDIR=/tmp/venv
mkdir -p $GENDIR

fetch the Krill OpenAPI specification document
wget -O $GENDIR/openapi.yaml https://raw.githubusercontent.com/NLnetLabs/krill/v0.7.3/
→˓doc/openapi.yaml

use the OpenAPI Generator to generate a Krill client library from the krill
OpenAPI specification
docker run --rm -v $GENDIR:/local \

openapitools/openapi-generator-cli generate \
-i /local/openapi.yaml \
-g python \
-o /local/out \
--additional-properties=packageName=krill_api

install the generated library where your Python 3 can find it
python3 -m venv $VENVDIR
source $VENVDIR/bin/activate
pip3 install wheel
pip3 install $GENDIR/out/

3. Run the sample application:

$ python3 /tmp/krill_test.py
{'cas': [{'handle': 'ca'}]}

Tip: To learn more about using the generated client library, consult the documentation in
$GENDIR/out/README.md.

Warning: Future improvements to the Krill OpenAPI specification may necessitate that you re-generate your
client library and possibly also alter your client program to match any changed class and function names.

72 Chapter 7. Using the API

CHAPTER

EIGHT

MONITORING

The HTTPS server in Krill provides endpoints for monitoring the application. A data format specifically for
Prometheus is available and dedicated port 9657 has been reserved.

On the /metrics path, Krill will expose several data points:

• A timestamp when the daemon was started

• The number of CAs Krill has configured

• The number of children for each CA

• The number of ROAs for each CA

• Timestamps when publishers were last updated

• The number of objects in the repository for each publisher

• The size of the repository, in bytes

• The RRDP serial number

This is an example of the output of the /metrics endpoint:

HELP krill_server_start timestamp of last krill server start
TYPE krill_server_start gauge
krill_server_start 1582189609

HELP krill_repo_publisher number of publishers in repository
TYPE krill_repo_publisher gauge
krill_repo_publisher 1

HELP krill_repo_rrdp_last_update timestamp of last update by any publisher
TYPE krill_repo_rrdp_last_update gauge
krill_repo_rrdp_last_update 1582700400

HELP krill_repo_rrdp_serial RRDP serial
TYPE krill_repo_rrdp_serial counter
krill_repo_rrdp_serial 128

HELP krill_repo_objects number of objects in repository for publisher
TYPE krill_repo_objects gauge
krill_repo_objects{publisher="acme-corp-intl"} 6

HELP krill_repo_size size of objects in bytes in repository for publisher
TYPE krill_repo_size gauge
krill_repo_size{publisher="acme-corp-intl"} 16468

(continues on next page)

73

https://prometheus.io/
https://github.com/prometheus/prometheus/wiki/Default-port-allocations

Krill User Manual

(continued from previous page)

HELP krill_repo_last_update timestamp of last update for publisher
TYPE krill_repo_last_update gauge
krill_repo_last_update{publisher="acme-corp-intl"} 1582700400

HELP krill_cas number of cas in krill
TYPE krill_cas gauge
krill_cas 1

HELP krill_cas_roas number of roas for CA
TYPE krill_cas_roas gauge
krill_cas_roas{ca="acme-corp-intl"} 4

HELP krill_cas_children number of children for CA
TYPE krill_cas_children gauge
krill_cas_children{ca="acme-corp-intl"} 0

The monitoring service has several additional endpoints on the following paths:

/stats/info Returns the Krill version and timestamp when the daemon was started in a concise
format

/stats/cas Returns the number of ROAs and children each CA has

/stats/repo Returns details on the internal repository, if configured

74 Chapter 8. Monitoring

CHAPTER

NINE

FAILURE SCENARIOS

Important: The most important thing to remember about possible failure scenarios in your setup is that Krill is
designed to run continuously, but there is no strict uptime requirement for the Certificate Authority (CA). If the CA
is not available you just cannot create or update ROAs. As long as your existing ROAs are being served by your web
server and rsync server, you have time to solve problems.

As long as Krill is running, it will automatically update the entitled resources on your certificate, as well as reissue
certificates, ROAs and all other objects before they expire or become stale. If Krill does go down, you have 8 hours to
bring it back up before data starts going stale.

9.1 Hardware and Software Failures

9.1.1 Failure of the Primary Krill CA Server

When the primary CA server goes down, users will not be able to create or edit ROAs until the server is back up or
failover to a secondary server has been completed. Relying party software will continue to be able to download and
verify existing ROAs.

With default timing settings new manifests and certificate revocation lists (CRLs) will be published eight hours before
they would expire, with a validity time of 24 hours. This means that the CA should be restored within eight hours after
failure. Please note that values can be changed. For example, it would be perfectly fine to republish 16 hours before
expiry, or even longer if the validity time is also extended. However, we do not recommend extending the validity time
beyond 24 hours because it could allow (theoretical) attacks where data is replayed to validators for longer.

9.1.2 The Disk on the Primary Krill CA Server is Full

Krill will crash, by design, if there is any failure in saving any state file to disk. If Krill cannot persist its state it should
not try to carry on. It could lead to disjoints between in-memory and on-disk state that are impossible to fix. Therefore,
crashing and forcing an operator to look at the system is the only sensible thing Krill can now do.

If this occurs, more space should be allocated. Krill can then try to restart properly. It will try to go back to the last
possible recoverable state if:

• it cannot rebuild its state at startup due to data corruption

• the environment variable: KRILL_FORCE_RECOVER is set

• the configuration file contains always_recover_data = true

75

Krill User Manual

Under normal circumstances performing this recovery will not be necessary. It can also take significant time due to
all the checks performed. So, we do not recommend forcing recovery when there is no data corruption. See Recover
State at Startup for more details.

During this failure, Relying party software will continue to be able to download and verify existing ROAs.

9.1.3 Corruption of Files on the Primary Krill CA Server

If an administrator or malicious attacker with access to the server modifies files after Krill has written them, then Krill
will just continue to operate. It will not re-read files as it keeps all data in memory as well. However, Krill may be
unable to come up if it is restarted. By default Krill will then only read the latest snapshots of its state components and
modifications since then. Krill will start if those files are unaffected.

Similar to the situation with a full disk, Krill will try to go back to the last possible recoverable state. See Recover
State at Startup for more details.

Krill can also be restored from a backup, but it would result in losing all changes from after the backup. As described
above, if Krill finds that the backup contains an incomplete transaction, it will fall back to the state prior to it.

During this failure, Relying party software will continue to be able to download and verify existing ROAs.

9.1.4 The Disk on the Krill Publication Server is Full

Krill will crash, by design, if there is any failure in saving any state file to disk. If this occurs, more space should be
allocated. Krill can then try to restart properly. It will try to go back to the last possible recoverable state as described
in the Recover State at Startup section.

If the repository is restored from back up, Relying Party software may be served outdated content from that backup
for a short while. However, when the service is resumed then the Krill CA will do a full re-sync and publish its current
content within 5 minutes if it had pending unpublished changes. If not, then a manual re-sync can be triggered through
the user interface, the command line or the API.

During this failure, Relying Party software will continue to be able to download and verify existing ROAs.

9.1.5 Failure of one of the Repository Servers

When a repository server running the web server and/or rsyncd server goes down or the service dies, the load balancer
should mitigate the issue. An error should be generated and the failed instance should be taken out of the pool. During
this failure, Relying party software will continue to be able to download and verify ROAs from the other repository
servers that are configured.

In the extreme case when all repository servers become unavailable, Relying Party software that has already down-
loaded the repository content will use cached data on disk. Depending on when data was last fetched, the RPKI
validity of BGP announcements will be unaffected between 8 and 24 hours, after which ROAs and all other objects
expire or become stale. Relying Party software that has never downloaded the repository contents will not affect the
RPKI validity of any BGP announcements; they will have the RPKI state Not Found.

76 Chapter 9. Failure Scenarios

Krill User Manual

9.2 Usage Failures

9.2.1 A Misconfigured ROA Causes a Legitimate Route to be Considered RPKI In-
valid

When an operator or a script generates a ROA that causes a legitimate route to be considered RPKI Invalid, it may
(severely) affect reachability of the network, as it is increasingly likely that other networks will start dropping the BGP
announcement.

Monitoring should be in place to detect misconfigured ROAs. If any legitimate BGP announcement has the state RPKI
Invalid the operator should remove the ROA and replace it with a correct one. Note that verifying RPKI validity state
does not have to be performed on actual BGP announcements seen in the DFZ. An ASN and prefix combo can be fed
to several Relying Party software packages, which will return the RPKI validity state based on its current cache.

9.2.2 An Incorrect ROA is Published for the Repository Servers

When one or more ROAs are generated that cause the prefix that contains the RPKI repository server IP to be con-
sidered RPKI Invalid, Relying Party software will retrieve these ROAs and promptly those networks will drop the
repository prefix. This means that even if/when operators fix the ROAs, the validators will not be able to retrieve the
updated information until their cached manifest and CRLs go stale. This issue can persist for a minimum of 8 hours
and a maximum of 24 hours.

9.2. Usage Failures 77

Krill User Manual

78 Chapter 9. Failure Scenarios

CHAPTER

TEN

RUNNING A PUBLICATION SERVER

Important: It is highly recommended to use an RPKI publication server provided by your parent CA, if available.
This relieves you of the responsibility to keep a public rsync and web server available at all times.

If you need to run your own Publication Server using Krill, then we recommend that you use a separate Krill instance
acting as a repository only. This setup allows for much easier reconfiguration (more on this below), and it allows that
other CAs - for example a delegated CA for one of your business units also publish at this same Publication Server.

Fig. 1: Running a publication server for yourself and your children

79

Krill User Manual

10.1 Configuring a Krill Repository

Note: The Krill UI is not currently aimed at using Krill as a repository server. For example when visiting the UI of a
Krill instance intended for use only as a repository and not as a CA, it will still prompt you on first use to create a CA.
There is also no support via the UI for managing the repository, for example it is not possible via the UI to complete a
child request to register with the repository.

Krill can be set up to run as a Publication Server through its configuration file. If enabled, the Publication Server is
created on start-up. After this any updates to the configuration will NOT be reflected in the Publication Server.

For this reason you should double check the values used for the public URIs to your repository server carefully before
the set-up. Using a dedicated Krill instance for the Publication Server will allow you to simply destroy and replace the
instance should it have been misconfigured.

The easiest way to make a configuration file is by using krillc config to generate the required configuration for you.
For example:

krillc config repo \
--server "https://rfc8183.example.net/" \
--token correct-horse-battery-staple \
--data ~/data/ \
--rrdp "https://rpki.example.net/rrdp/" \
--rsync "rsync://rpki.example.net/repo/" > krill.conf

Make sure that the --server option reflects a base URI that your Krill CA publication clients can reach, and make
sure that this URI is exposed using a proxy server that has a proper HTTPS certificate configured.

Make sure that the --rrdp and --rsync options match the configuration of your “Repository Servers” which make
your repository available over HTTPS and rsync to Relying Parties.

Note: It would have been better to make the Publication Server configuration something that should be done run-time,
as this would match more intuitively with the fact that the server, rrdp and rsync URIs cannot be changed through the
configuration file.

In a future release of Krill we may do exactly that. But, even if we do it would be ill advised to allow changing these
URIs at run time, as there would be no way for the Krill Publication Server to inform its publishers about any change.

So, in short, this needs to be set up correctly once. If it turns out to be wrong, then a new Publication Server should be
set up and any existing publishers should be migrated as described below.

10.2 Proxy for Remote Publishers

Krill runs the RFC8181 Publication Server. Remote publishers, CAs which use your Publication Server, will need to
connect to this under the /rfc8181 path under the service_uri that you specified in your server.

Make sure that you set up a proxy server such as NGINX, Apache, etc. which uses a valid HTTPS certificate, and
which proxies /rfc8181 to Krill.

Note that you should not add any additional authentication mechanisms to this location. RFC 8181 uses cryptograph-
ically signed messages sent over HTTP and is secure. However, verifying messages and signing responses can be
computationally heavy, so if you know the source IP addresses of your publisher CAs, you may wish to restrict access
based on this.

80 Chapter 10. Running a Publication Server

https://rfc8183.example.net/
https://rpki.example.net/rrdp/

Krill User Manual

10.3 Configuring Repository Servers

To actually serve the published content to Rsync and RRDP clients you will need to run your own repository servers
using tools such as Rsyncd and NGINX.

Krill will write the repository files under the data directory specified in its configuration file:

$DATA_DIR/repo/rsync/current/ Contains the files for Rsync
$DATA_DIR/repo/rrdp/ Contains the files for HTTPS (RRDP)

You can share the contents of these directories with your repository servers in various ways. It is possible to have
a redundant shared file system where the Krill Publication Server can write, and your repository servers can read.
Alternatively, you can synchronise the contents of these directories in another way, such as rsyncing them over every
couple of minutes.

If you are using a shared file system, please note that the rsync /current directory cannot be the mount point. Krill
tries to write the entire repository to a new folder under $DATA_DIR/repo/rsync and then renames it. This is
done to minimise issues with files being updated while relying party software is fetching data.

10.3.1 Rsync

The next step is to configure your rsync daemons to expose a ‘module’ for your files. Make sure that the Rsync URI
including the ‘module’ matches the rsync_base in your Krill configuration file. Basic configuration can then be as
simple as:

$ cat /etc/rsyncd.conf
uid = nobody
gid = nogroup
max connections = 50
socket options = SO_KEEPALIVE

[repo]
path = /var/lib/krill/data/repo/rsync/current/
comment = RPKI repository
read only = yes

10.3.2 RRDP

For RRDP you will need to set up a web server of your choice and ensure that it has a valid TLS certificate. Next,
you can make the files found under, or copied from $DATA_DIR/repo/rrdp available here. Make sure that the
public URI to the RRDP base directory matches the value of rrdp_service_uri in your krill.conf file, or
the --rrdp option if you generated the configuration.

If desired, you can also use a CDN in front of this server to further reduce your load and uptime requirements. If you
do, make sure that the public URI matches the directive in krill.conf, because this will be used in your RPKI
certificate.

10.3. Configuring Repository Servers 81

Krill User Manual

10.3.3 RFC 8181 (publication protocol)

Make sure that your Krill Publication Server can be reached by your Krill CA clients. The best way to do this, is by
setting up a web server, similar to the RRDP set up above, which proxies access to URIs starting with /rfc8181
under the hostname you specified with the --server option through to your Krill Publication Server.

10.4 Publishing in the Repository

As there is no UI support for this, you will need to use the command line interface using the krillc publisher subcom-
mand to manage publishers.

This subcommand will allow you to add your Krill CA client’s RFC8181 Publisher Request XML, and obtain a
Repository Response XML for it. From the client CA’s perspective this part of the process is exactly as described
here.

To add the Krill CA client XML to your server use the following:

$ krillc publishers add --request <path-to-xml> [--publisher publisher]

If --publisher is not specified then the publisher identifier handle will be taken from the XML. Handles need to
be unique. So, you may want or need to override this - especially if you provide your Publication Server as a service
to others.

If successful this will show the response XML. But, you can also get this response XML for a configured publisher
using the following:

$ krillc publishers response --publisher publisher

10.5 Migrating the Repository

If you find that there is an issue with your repository or, for example, you want to change its domain name, you can
set up a new Krill instance for the new repository. When you are satisfied that the new one is correct, you can migrate
your CA to it by adding them as a publisher under the new repository server, and then updating your CA to use the
new repository.

Updating the repository of your Krill CAs is currently not possible using the UI, but you can archive this trough the
command line interface connecting to your Krill instance that hosts your CA.

First you will need to get your CA’s Publication Request XML using the following:

$ krillc repo request

You then need to give this XML to your Publication Server, be it provided by a third party or managed by yourself as
described above. After receiving the Repository Response XML you can then update your CA’s repository using:

$ krillc repo update --response <path-to-xml>

Krill will then make sure that objects are moved properly, and that a new certificate is requested from your parent(s)
to match the new location. This scenario would also apply when your RIR starts providing a repository service. You
can update your CA to start publishing there instead.

82 Chapter 10. Running a Publication Server

CHAPTER

ELEVEN

RUNNING WITH DOCKER

This page explains the additional features and differences compared to running Krill with Cargo that you need to be
aware of when running Krill with Docker.

11.1 Get Docker

If you do not already have Docker installed, follow the platform specific installation instructions via the links in the
Docker official “Supported platforms” documentation.

11.2 Fetching and Running Krill

The docker run command will automatically fetch the Krill image the first time you use it, and so there is no
installation step in the traditional sense. The docker run command can take many arguments and can be a bit
overwhelming at first.

The command below runs Krill in the background and shows how to configure a few extra things like log level and
volume mounts (more on this below).

$ docker run -d --name krill -p 127.0.0.1:3000:3000 \
-e KRILL_LOG_LEVEL=debug \
-e KRILL_FQDN=rpki.example.net \
-e KRILL_AUTH_TOKEN=correct-horse-battery-staple \
-e TZ=Europe/Amsterdam \
-v krill_data:/var/krill/data/ \
-v /tmp/krill_rsync/:/var/krill/data/repo/rsync/ \
nlnetlabs/krill

Note: The Docker container by default uses UTC time. If you need to use a different time zone you can set this using
the TZ environment variable as shown in the example above.

83

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/engine/reference/run/

Krill User Manual

11.3 Admin Token

By default Docker Krill secures itself with an automatically generated admin token. You will need to obtain this token
from the Docker logs in order to manage Krill via the API or the krillc CLI tool.

$ docker logs krill 2>&1 | fgrep token
docker-krill: Securing Krill daemon with token <SOME_TOKEN>

You can pre-configure the token via the auth_token Krill config file setting, or if you don’t want to provide a config
file you can also use the Docker environment variable KRILL_AUTH_TOKEN as shown above.

11.4 Running the Krill CLI

11.4.1 Local

Using a Bash alias with <SOME_TOKEN> you can easily interact with the locally running Krill daemon via its
command-line interface (CLI):

$ alias krillc='docker exec \
-e KRILL_CLI_SERVER=https://127.0.0.1:3000/ \
-e KRILL_CLI_TOKEN=correct-horse-battery-staple \
nlnetlabs/krill krillc'

$ krillc list -f json
{

"cas": []
}

11.4.2 Remote

The Docker image can also be used to run krillc to manage remote Krill servers. Using a shell alias simplifies this
considerably:

$ alias krillc='docker run --rm \
-e KRILL_CLI_SERVER=https://rpki.example.net/ \
-e KRILL_CLI_TOKEN=correct-horse-battery-staple \
-v /tmp/ka:/tmp/ka nlnetlabs/krill krillc'

$ krillc list -f json
{

"cas": []
}

Note: The -v volume mount is optional, but without it you will not be able to pass files to krillc which some
subcommands require, e.g.

$ krillc roas update --ca my_ca --delta /tmp/delta.in

84 Chapter 11. Running with Docker

Krill User Manual

11.5 Service and Certificate URIs

The Krill service_uri and rsync_base config file settings can be configured via the Docker environment vari-
able KRILL_FQDN as shown in the example above. Providing KRILL_FQDN will set both service_uri and
rsync_base.

11.6 Data

Krill writes state and data files to a data directory which in Docker Krill is hidden inside the Docker container and is
lost when the Docker container is destroyed.

11.6.1 Persistence

To protect the data you can write it to a persistent Docker volume which is preserved even if the Krill Docker container
is destroyed. The following fragment from the example above shows how to configure this:

docker run -v krill_data:/var/krill/data/

11.6.2 Access

Some of the data files written by Krill to its data directory are intended to be shared with external clients via the rsync
protocol. To make this possible with Docker Krill you can either:

• Mount the rsync data directory in the host and run rsyncd on the host, OR

• Share the rsync data with another Docker container which runs rsyncd

Mounting the data in a host directory:

docker run -v /tmp/krill_rsync:/var/krill/data/repo/rsync

Sharing via a named volume:

docker run -v krill_rsync:/var/krill/data/repo/rsync

11.7 Logging

Krill logs to a file by default. Docker Krill however logs by default to stderr so that you can see the output using the
docker logs command.

At the default warn log level Krill doesn’t output anything unless there is something to warn about. Docker Krill
however comes with some additional logging which appears with the prefix docker-krill:. On startup you will
see something like the following in the logs:

docker-krill: Securing Krill daemon with token ba473bac-021c-4fc9-9946-6ec109befec3
docker-krill: Configuring /var/krill/data/krill.conf ..
docker-krill: Dumping /var/krill/data/krill.conf config file
...
docker-krill: End of dump

11.5. Service and Certificate URIs 85

https://docs.docker.com/storage/volumes/
https://hub.docker.com/search?q=rsyncd&type=image

Krill User Manual

11.8 Environment Variables

The Krill Docker image supports the following Docker environment variables which map to the following krill.
conf settings:

Environment variable Equivalent Krill config setting
KRILL_AUTH_TOKEN auth_token
KRILL_FQDN service_uri and rsync_base
KRILL_LOG_LEVEL log_level
KRILL_USE_TA use_ta

To set these environment variables use -e when invoking docker, e.g.:

docker run -e KRILL_FQDN=https://rpki.example.net/

11.9 Using a Config File

Via a volume mount you can replace the Docker Krill config file with your own and take complete control:

docker run -v /tmp/krill.conf:/var/krill/data/krill.conf

This will instruct Docker to replace the default config file used by Docker Krill with the file /tmp/krill.conf on
your host computer.

86 Chapter 11. Running with Docker

INDEX

R
RFC

RFC 6489, 69, 70
RFC 6492, 11, 43, 67
RFC 8183, 21, 36, 38, 39, 42, 44, 45, 65, 68, 69

87

	Before You Start
	The Moving Parts
	Publishing With Your Parent
	Publishing Yourself
	System Requirements

	Architecture
	Used Disk Space
	Saving State Changes
	Loading State at Startup
	Recover State at Startup
	Backup and Restore
	Krill Upgrades
	Proxy and HTTPS

	Install and Run
	Installing with Debian and Ubuntu Packages
	Installing with Cargo

	Get Started with Krill
	Login
	Create your Certificate Authority
	RIR and NIR Interactions
	Hosted Publication Server
	Repository Setup
	Parent Setup

	Manage ROAs
	Show BGP Info
	ROA Suggestions
	Add a ROA

	Using the CLI or API
	Introduction
	Setting Defaults
	Explore the API
	krillc config
	krillc health
	krillc info
	krillc add
	krillc delete
	krillc list
	krillc parents
	krillc parents request
	krillc parents add
	krillc parents statuses
	krillc parents contact
	krillc parents remove
	krillc repo
	krillc repo request
	krillc repo configure
	krillc repo status
	krillc repo show
	krillc show
	krillc issues
	krillc history
	krillc history commands
	krillc history details
	krillc roas
	krillc roas list
	krillc roas update
	krillc roas bgp
	krillc bulk
	krillc bulk publish
	krillc bulk refresh
	krillc bulk sync
	krillc children
	krillc children add
	krillc children info
	krillc children update
	krillc children response
	krillc children remove
	krillc keyroll
	krillc keyroll init

	Using the API
	Getting Help
	Generating Client Code
	Sample Application

	Monitoring
	Failure Scenarios
	Hardware and Software Failures
	Usage Failures

	Running a Publication Server
	Configuring a Krill Repository
	Proxy for Remote Publishers
	Configuring Repository Servers
	Publishing in the Repository
	Migrating the Repository

	Running with Docker
	Get Docker
	Fetching and Running Krill
	Admin Token
	Running the Krill CLI
	Service and Certificate URIs
	Data
	Logging
	Environment Variables
	Using a Config File

	Index

